首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 230 毫秒
1.
This paper examines the performances of NeQuick2, the latest available IRI-2016, IRI-2012 and IRI-2007 models in describing the monthly and seasonal mean total electron content (TEC) over the East African region. This is to gain insight into the success of the various model types and versions at characterizing the ionosphere within the equatorial ionization anomaly. TEC derived from five Global Positioning System (GPS) receivers installed at Addis Ababa (ADD, 5.33°N, 111.99°E Geog.), Asab (ASAB, 8.67°N, 116.44°E Geog.), Ambo (ABOO, 5.43°N, 111.05°E Geog.), Nairobi (RCMN, ?4.48°N, 108.46°E Geog.) and Nazret (NAZR, 4.78°N, 112.43°E Geog.), are compared with the corresponding values computed using those models during varying solar activity period (1998 and 2008–2015). We found that different models describe the equatorial and anomaly region ionosphere best depending on solar cycle, season and geomagnetic activity levels. Our results show that IRI-2016 is the best model (compared to others in terms of discrepancy range) in estimating the monthly mean GPS-TEC at NAZR, ADD and RCMN stations except at ADD during 2008 and 2012. It is also found that IRI-2012 is the best model in estimating the monthly mean TEC at ABOO station in 2014. IRI show better agreement with observations during June solstice for all the years studied at ADD except in 2012 where NeQuick2 better performs. At NAZR, NeQuick2 better performs in estimating seasonal mean GPS-TEC during 2011, while IRI models are best during 2008–2009. Both NeQuick2 and IRI models underestimate measured TEC for all the seasons at ADD in 2010 but overestimate at NAZR in 2009 and RCMN in 2008. The periodic variations of experimental and modeled TEC have been compared with solar and geomagnetic indices at ABOO and ASAB in 2014 and results indicate that the F10.7 and sunspot number as indices of solar activity seriously affects the TEC variations with periods of 16–32?days followed by the geomagnetic activity on shorter timescales (roughly periods of less than 16?days). In this case, NeQuick2 derived TEC shows better agreement with a long term period variations of GPS-TEC, while IRI-2016 and IRI-2007 show better agreement with observations during short term periodic variations. This indicates that the dependence of NeQuick2 derived TEC on F10.7 is seasonal. Hence, we suggest that representation of geomagnetic activity indices is required for better performance over the low latitude region.  相似文献   

2.
We have compared the TEC obtained from the IRI-2012 model with the GPS derived TEC data recorded within southern crest of the EIA in the Eastern Africa region using the monthly means of the 5 international quiet days for equinoxes and solstices months for the period of 2012 – 2013. GPS-derived TEC data have been obtained from the Africa array and IGS network of ground based dual-frequency GPS receivers from four stations (Kigali (1.95°S, 30.09°E; Geom. Lat. 11.63°S), Malindi (2.99°S, 40.19°E; Geom. Lat. 12.42°S), Mbarara (0.60°S, 30.74°E; Geom. Lat. 10.22°S) and Nairobi (1.22°S, 36.89°E; Geom. Lat. 10.69°S)) located within the EIA crest in this region. All the three options for topside Ne of IRI-2012 model and ABT-2009 for bottomside thickness have been used to compute the IRI TEC. Also URSI coefficients were considered in this study. These results are compared with the TEC estimated from GPS measurements. Correlation Coefficients between the two sets of data, the Root-Mean Square Errors (RMSE) of the IRI-TEC from the GPS-TEC, and the percentage RMSE of the IRI-TEC from the GPS-TEC have been computed. Our general results show that IRI-2012 model with all three options overestimates the GPS-TEC for all seasons and at all stations, and IRI-2001 overestimates GPS-TEC more compared with other options. IRI-Neq and IRI-01-corr are closely matching in most of the time. The observation also shows that, GPS TEC are underestimated by TEC from IRI model during noon hours, especially during equinoctial months. Further, GPS-TEC values and IRI-TEC values using all the three topside Ne options show very good correlation (above 0.8). On the other hand, the TEC using IRI-Neq and IRI-01- corr had smaller deviations from the GPS-TEC compared to the IRI-2001.  相似文献   

3.
This paper investigated the performance of the latest International Reference Ionosphere model (IRI-2016) over that of IRI-2012 in predicting total electron content (TEC) at three different stations in the Indian region. The data used were Global Positioning System (GPS) data collected during the ascending phase of solar cycle 24 over three low-latitude stations in India namely; Bangalore (13.02°N Geographic latitude, 77.57°E Geographic longitude), Hyderabad (17.25°N Geographic latitude, 78.30°E Geographic longitude) and Surat (21.16°N Geographic latitude, 72.78°E Geographic longitude). Monthly, the seasonal and annual variability of GPS-TEC have been compared with those derived from International Reference Ionosphere IRI-2016 and IRI-2012 with two different options of topside electron density: NeQuick and IRI01-corr. It is observed that both versions of IRI (i.e., IRI-2012 and IRI-2016) predict the GPS-TEC with some deviations, the latest version of IRI (IRI-2016) predicted the TEC similar to those predicted by IRI-2012 for all the seasons at all stations except for morning hours (0500 LT to 1000?LT). This shows that the effect of the updated version is seen only during morning hours and also that there is no change in TEC values by IRI-2016 from those predicted by IRI-2012 for the rest of the time of the day in the Indian low latitude region. The semiannual variations in the daytime maximum values of TEC are clearly observed from both GPS and model-derived TEC values with two peaks around March-April and September-October months of each year. Further, the Correlation of TEC derived by IRI-2016 and IRI-2012 with EUV and F10.7 shows similar results. This shows that the solar input to the IRI-2016 is similar to IRI 2012. There is no significant difference observed in TEC, bottom-side thickness (B0) and shape (B1) parameter predictions by both the versions of the IRI model. However, a clear improvement is visible in hmF2 and NmF2 predictions by IRI-2016 to that by IRI-2012. The SHU-2015 option of the IRI-2016 gives a better prediction of NmF2 for all the months at low latitude station Ahmedabad compare to AMTB 2013.  相似文献   

4.
The effects of physical events on the ionosphere structure is an important field of study, especially for navigation and radio communication. The paper presents the spatio-temporal ionospheric TEC response to the recent annular solar eclipse on June 21, 2020, which spans across two continents, Africa and Asia, and 14 countries. This eclipse took place on the same day as the June Solstice. The Global Navigation Satellite System (GNSS) based TEC data of the Global Ionosphere Maps (GIMs), 9 International GNSS Service (IGS) stations and FORMOSAT-7/COSMIC-2 (F7/C2) were utilized to analyze TEC response during the eclipse. The phases of the TEC time series were determined by taking the difference of the observed TEC values on eclipse day from the previous 5-day median TEC values. The results showed clear depletions in the TEC time series on June 21. These decreases were between 1 and 9 TECU (15–60%) depending on the location of IGS stations. The depletions are relatively higher at the stations close to the path of annular eclipse than those farther away. Furthermore, a reduction of about ?10 TECU in the form of an equatorial plasma bubble (EPB) was observed in GIMs at ~20° away from the equator towards northpole, between 08:00–11:00 UT where its maximum phase is located in southeast Japan. Additionally, an overall depletion of ~10% was observed in F7/C2 derived TEC at an altitude of 240 km (hmF2) in all regions affected by the solar eclipse, whereas, significant TEC fluctuations between the altitudes of 100 km ? 140 km were analyzed using the Savitzky-Golay smoothing filter. To prove TEC depletions are not caused by space weather, the variation of the sunspot number (SSN), solar wind (VSW), disturbance storm-time (Dst), and Kp indices were investigated from 16th to 22nd June. The quiet space weather before and during the solar eclipse proved that the observed depletions in the TEC time series and profiles were caused by the annular solar eclipse.  相似文献   

5.
This study characterizes total electron content (TEC) measured by Global Positioning System (GPS) over African equatorial ionization anomaly (EIA) region for 2009–2016 period during both quiet geomagnetic conditions (Kp?≤?1) and normal conditions (1?>?Kp?≤?4). GPS-TEC data from four equatorial/low-latitude stations, namely, Addis Ababa (ADIS: 9.04°N, 38.77°E, mag. lat: 0.2°N) [Ethiopia]; Yamoussoukro (YKRO: 6.87°N, 5.24°W, mag. lat: 2.6°S) [Ivory Coast]; Malindi (MAL2; 3.00°S, 40.19°E, mag. lat: 12.4°S) [Kenya] and Libreville (NKLG; 0.35°N, 9.67°W, mag. lat: 13.5°S) [Gabon] were used for this study. Interesting features like noontime TEC bite-out, winter anomaly during the ascending and maximum phases of solar cycle 24, diurnal and seasonal variations with solar activity have been observed and investigated in this study. The day-to-day variations exhibited ionospheric TEC asymmetry on an annual scale. TEC observed at equatorial stations (EIA-trough) and EIA-crest reach maximum values between ~1300–1600 LT and ~1300–1600 LT, respectively. About 76% of the high TEC values were recorded in equinoctial months while the June solstice predominantly exhibited low TEC values. Yearly, the estimated TEC values increases or decreases with solar activity, with 2014 having the highest TEC value. Solar activity dependence of TEC within the EIA zone reveals that both F10.7?cm index and EUV flux (24–36?nm) gives a stronger correlation with TEC than Sunspot Number (SSN). A slightly higher degree of dependence is on EUV flux with the mean highest correlation coefficient (R) value of 0.70, 0.83, 0.82 and 0.88 for quiet geomagnetic conditions (Kp?≤?1) at stations ADIS, MAL2, NKLG, and YKRO, respectively. The correlation results for the entire period consequently reveals that SSN and solar flux F10.7?cm index might not be an ideal index as a proxy for EUV flux as well as to measure the variability of TEC strength within the EIA zone. The estimated TEC along the EIA crest (MAL2 and NKLG) exhibited double-hump maximum, as well as post-sunset peaks (night time enhancement of TEC) between ~2100 and 2300 LT. EIA formation was prominent during evening/post-noon hours.  相似文献   

6.
In this research, as part of working towards improving the IRI over equatorial region, the total electron content (TEC) derived from GPS measurements and IRI-2007 TEC predictions at Chumphon station (10.72°N, 99.37°E), Thailand, during 2004–2006 is analyzed. The seasonal variation of the IRI-2007 TEC predictions is compared with the TEC from the IRI-2007 TEC model with the option of the actual F2 plasma frequency (foF2) measurements as well as the TEC from the GPS and International GNSS service (IGS). The Chumphon station is located at the equatorial region and the low latitude of 3.22°N. For a declining phase of the solar cycle (2004–2006), the study shows that the IRI-2007 TEC underestimates the IRI-2007 TEC with the foF2 observation at the nighttime by about 5 TECU. The maximum differences are about 15 TECU during daytime and 5 TECU during nighttime. The overestimation is more evident at daytime than at nighttime. When compared in terms of the root-mean square error (RMSE), we find that the highest RMSE between GPS TEC and IRI 2007 TEC is 14.840 TECU at 1230 LT in 2004 and the lowest average between them is 1.318 TECU at 0630 LT in 2006. The noon bite-out phenomena are clearly seen in the IRI-2007 TEC with and without optional foF2 measurements, but not on the GPS TEC and IGS TEC. The IRI TEC with optional foF2 measurements gives the lowest RMSE values between IRI TEC predicted and TEC measurement. However, the TEC measurements (GPS TEC and IGS TEC) are more correct to use at Chumphon station.  相似文献   

7.
In recent years, new techniques and algorithms such as Artificial Neural Networks (ANNs), Fuzzy Inference Systems (FIS) and Genetic Algorithm (GA) have been used as alternative statistical tools in modeling and forecasting issues. These methods have been extensively used in the field of geosciences and atmospheric physics. The main purpose of this paper is to combine FIS and ANNs for local modeling of the ionosphere Total Electron Content (TEC) in Iran. An Adaptive Neuro-Fuzzy Inference System (ANFIS) is developed for TEC modeling. Also, Multi-Layer Perceptron ANN (MLP-ANN) and ANN based on Radial Base Functions (RBF) have been designed for analyzing ANFIS results. Observations of 29 Global Positioning System (GPS) stations from the Iranian Permanent GPS Network (IPGN) have been used in 3 different seasons in 2015 and 2016. These stations are located at geomagnetic low latitudes region. Out of these 29 stations, 24 stations for training and 5 stations for testing and validating were selected. The relative and absolute errors have been used to evaluate the accuracy of the proposed model. Also, the results of this paper are compared with the International Reference Ionosphere model (IRI2016). The maximum values of the average relative error for RBF, MLP-ANN, ANFIS and IRI2016 methods are 13.88%, 11.79%, 10.06%, and 18.34%, respectively. Also, the maximum values of the average absolute error for these methods are 2.38, 2.21, 1.5 and 3.36 TECU, respectively. Comparison of diurnal predicted TEC from the ANFIS, RBF, MLP-ANN and IRI2016 models with GPS-TEC revealed that the ANFIS provides more accurate predictions than the other methods in the test area.  相似文献   

8.
The IRI model offers a choice of options for the computation of the electron density profile and electron content (TEC). Recently new options for the topside electron density profile have been developed, which have a strong impact on TEC. Therefore it is important to test massively the IRI and the new options with experimental data. A large number of permanent stations record dual frequency GPS data from which it is possible to obtain TEC values. Thirty-one worldwide distributed stations have been selected to investigate the capabilities of the IRI to reproduce experimental TEC. Data for years 2000 (high solar activity) and 2004 (medium solar activity) have been analyzed computing modeled values with the IRI-2001 and the IRI-2007-NeQuick topside options. It is found that IRI-2007-NeQuick option generally improves the estimate of the slant TEC, especially in the case of high latitudes stations during high solar activity.  相似文献   

9.
利用中国区域内五个GPS台站(一个台站处于日全食区域、四个台站处于日偏食区域)观测数据, 研究2009年7月22日日全食期间电离层总电子含量(TEC)的变化, 结果表明, 日全食期间, 电离层TEC值经历了下降和恢复的过程, 最小TEC相对于最大食偏的时间延迟约为1~10min; 台站测得最小TEC的星下点(IPP)越靠近日全食带TEC下降量越大, 在日食期间武汉站(114.35°E, 30.53°N) TEC相对于各参考日期的TEC, 其平均下降量最大, 达到4.58TECU.   相似文献   

10.
大耀斑期间向日面电离层总电子含量的响应个例分析   总被引:3,自引:0,他引:3  
利用2001年4月15日1336UT耀斑爆发期间向日面GPS观测数据提取的总电子含量的时间变化曲线。分析了向日面电离层对这次耀斑的响应特点.结果表明,耀斑期间向日面电离层出现了总电子含量突增事件.最大总电子含量增加量约为2.6TECU,在0600LT和1800LT都观测到了总电子含量突增,世增加幅度仅为0.5-1TECU.在高纬地区,由于电离层闪烁,从TEC时间变化曲线提取不出来总电子含量增加值.从各卫星星下点处的TEC增加量和各星下点处的太阳天顶角的关系可以看到,TEC增加量与太阳天顶角有关,太阳天顶角越大,TEC增幅越小。另外,从总电子含量时间变化率曲线上还观测到了时间同步的小尺度扰动,通过与耀斑期间硬X射线辐射通量的比较,发现两者有明显的相关性,电离层中的这种扰动与耀斑期间的硬X射线或远紫外辐射有关.  相似文献   

11.
The International Reference Ionosphere (IRI) is a model of the ionosphere, based on experimental data, which has been proposed as a standard ionospheric model. As such, it should be tested extensively to determine its range of validity. One of the ways in which the electron denisty profile given by the IRI, especially above the peak of the F layer, can be tested is to compare calculated and observed values of total electron content (TEC). We have therefore studied the discrepancies between calculated and observed values of TEC recorded at 15 stations covering a wide range of longitudes and latitudes, mainly in the northern hemisphere, and mainly for high levels of solar activity. W have found that the IRI produces reasonably accurate values of TEC at mid and high latitudes, but that it greatly underestimates the daytime values of TEC at low latitudes. We conclude therefore that the daytime electron density profile given by the IRI is reasonably accurate at mid and high latitudes, at least above the peak of the F2 layer. The situation at low latitudes clearly requires more work, and we have suggested two possible lines of study. The generally low discrepancies at night indicate that the night-time electron density profiles given by the IRI correspond fairly closely to the actual profiles.  相似文献   

12.
The ionosphere induces a time delay in transionospheric radio signals such as the Global Positioning System (GPS) signal. The Total Electron Content (TEC) is a key parameter in the mitigation of ionospheric effects on transionospheric signals. The delay in GPS signal induced by the ionosphere is proportional to TEC along the path from the GPS satellite to a receiver. The diurnal monthly and seasonal variations of ionospheric electron content were studied during the year 2010, a year of extreme solar minimum (F10.7 = 81 solar flux unit), with data from the GPS receiver and the Digisonde Portable Sounder (DPS) collocated at Ilorin (Geog. Lat. 8.50°N, Long. 4.50°E, dip −7.9°). The diurnal monthly variation shows steady increases in TEC and F2-layer critical frequency (foF2) from pre-dawn minimum to afternoon maximum and then decreases after sunset. TEC show significant seasonal variation during the daytime between 0900 and 1900 UT (LT = UT + 1 h) with a maximum during the March equinox (about 35 TECU) and minimum during the June solstice (about 24 TECU). The GPS-TEC and foF2 values reveal a weak seasonal anomaly and equinoctial asymmetry during the daytime. The variations observed find their explanations in the amount of solar radiation and neutral gas composition. The measured TEC and foF2 values were compared with last two versions of the International Reference Ionosphere (IRI-2007 and IRI-2012) model predictions using the NeQuick and CCIR (International Radio Consultative Committee) options respectively in the model. In general, the two models give foF2 close to the experimental values, whereas significant discrepancies are found in the predictions of TEC from the models especially during the daytime. The error in height dependent thickness parameter, daytime underestimation of equatorial drift and contributions of electrons from altitudes above 2000 km have been suggested as the possible causes.  相似文献   

13.
The Earth's ionosphere and especially its equatorial part is a highly dynamical medium. Geostationary satellites are known to be a powerful tool for ionospheric studies. Recent developments in BDS-GEO satellites allow such studies on the new level due to the best noise pattern in TEC estimations, which corresponds to those of GPS/GLONASS systems. Here we used BDS-GEO satellites to demonstrate their capability for studying equatorial ionosphere variability on different time scales. Analyzing data from the equatorial SIN1 IGS station we present seasonal variations in geostationary slant TEC for the periods of high (October 2013 - October 2014) and low (January 2017 - January 2018) solar activity, which show semi-annual periodicity with amplitudes about 10 TECU during solar maximum and about 5 TECU during the solar minimum. The 27-day variations are also prominent in geostationary slant TEC variations, which correlates quite well with the variations in solar extreme UV radiation. We found semi-annual pattern in small scale ionospheric disturbances evaluated based on geostationary ROTI index: maximal values correspond to spring and fall equinoxes and minimum values correspond to summer and winter solstices. The seasonal asymmetry in ROTI values was observed: spring equinox values were almost twice as higher than fall equinox ones. We also present results on the 2017 May 28–29 G3 geomagnetic storm, when ~30 TECU positive anomaly was recorded, minor and final major sudden stratospheric warmings in February and March 2016, with positive daytime TEC anomalies up to 15–20 TECU, as well as the 2017 September 6 X9.3 solar flare with 2 TECU/min TEC rate. Our results show the large potential of geostationary TEC estimations with BDS-GEO signals for continuous monitoring of space weather effects in low-latitude and equatorial ionosphere.  相似文献   

14.
Using vertical total electron content (VTEC) measurements obtained from GPS satellite signals the capability of the NeQuick 2 and IRI Plas models to predict VTEC over the low latitude and South American sector is analyzed. In the present work both models were used to calculate VTEC up to the height of GPS satellites. Also, comparisons between the performance of IRI Plas and IRI 2007 have been done. The data correspond to June solstice and September equinox 1999 (high solar activity) and they were obtained at nine stations. The considered latitude range extends from 18.4°N to ?64.7°N and the longitude ranges from 281.3°E to 295.9°E in the South American sector. The greatest discrepancies among model predictions and the measured VTEC are obtained at low latitudes stations placed in the equatorial anomaly region. Underestimations as strong as 40?TECU [1?TECU?=?1016?m?2] can be observed at BOGT station for September equinox, when NeQuick2 model is used. The obtained results also show that: (a) for June solstice, in general the performance of IRI Plas for low latitude stations is better than that of NeQuick2 and, vice versa, for highest latitudes the performance of NeQuick2 is better than that of IRI Plas. For the stations TUCU and SANT both models have good performance; (b) for September equinox the performances of the models do not follow a clearly defined pattern as in the other season. However, it can be seen that for the region placed between the Northern peak and the valley of the equatorial anomaly, in general, the performance of IRI Plas is better than that of NeQuick2 for hours of maximum ionization. From TUCU to the South, the best TEC predictions are given by NeQuick2.The source of the observed deviations of the models has been explored in terms of CCIR foF2 determination in the available ionosonde stations in the region. Discrepancies can be also related to an unrealistic shape of the vertical electron density profile and or an erroneous prediction of the plasmaspheric contribution to the vertical total electron content. Moreover, the results of this study could be suggesting that in the case of NeQuick, the underestimation trend could be due to the lack of a proper plasmaspheric model in its topside representation. In contrast, the plasmaspheric model included in IRI, leads to clear overestimations of GPS derived TEC.  相似文献   

15.
The ionospheric total electron content (TEC) in both northern and southern Equatorial anomaly regions are examined by using the Global Positioning System (GPS) based TEC measurements around 73°E Longitude in the Asian sector. The TEC contour charts obtained at SURAT (21.16°N; 72.78°E; 12.9°N Geomagnetic Lat.) and DGAR (7.27°S; 72.37°E; 15.3°S Geomagnetic Lat.) over 73°E longitude during a very low solar activity phase (2009) and a moderate solar activity (2012) phase are used in this study. The results show the existence of hemispheric asymmetry and the effects of solar activity on the EIA crest in occurrence time, location and strength. The results are also compared with the TEC derived by IRI-2016 Model and it is found that the North-South asymmetry at the EIA region is clearly depicted by IRI-2016 with some discrepancies (up to 20% in the northern hemisphere at SURAT and up to 40% in the southern hemisphere at DGAR station for June Solstice and up to 10% both for SURAT and DGAR for December Solstice). This discrepancy in the IRI-2016 model is found larger during the year 2012 than that during the solar minimum year 2009 at both the hemispheres. Further, an asymmetry index, (Ai) is determined to illustrate the North-South asymmetry observed in TEC at EIA crest. The seasonal, annual and solar flux dependence of this index are investigated during both solstices and compared with the TEC derived by IRI.  相似文献   

16.
This work presents an analysis of the Total Electron Content (TEC) derived from the International GNSS Service (IGS) receivers at Malindi (mal2: 2.9oS, 40.1oE, dip −26.813o), Kasarani (rcmn: 36.89oE, 1.2oS, dip −23.970o), Eldoret (moiu: 35.3oE, 0.3oN, dip −21.037o) and GPS-SCINDA (36.8oE, 1.3oS, dip −24.117o) receiver located in Nairobi for the period 2009–2011. The diurnal, monthly and seasonal variations of the GPS derived TEC (GPS-TEC) and effects of space weather on TEC are compared with TEC from the 2007 International Reference Ionosphere model (IRI-TEC) using the NeQuick option for the topside electron density. The diurnal peaks in GPS-TEC is maximum during equinoctial months (March, April, October) and in December and minimum in June solstice months (May, June, July). The variability in GPS-TEC is minimal in all seasons between 0:00 and 04:00 UT and maximum near noon between 10:00 and 14:00 UT. Significant variability in TEC at post sunset hours after 16:00 UT (19:00 LT) has been noted in all the seasons except in June solstice. The TEC variability of the post sunset hours is associated with the occurrence of the ionization anomaly crest which enhances nighttime TEC over this region. A comparison between the GPS-TEC and IRI-TEC indicates that both the model and observation depicts a similar trend in the monthly and seasonal variations. However seasonal averages show that IRI-TEC values are higher than the GPS-TEC. The IRI-TEC also depicts a double peak in diurnal values unlike the GPS-TEC. This overestimation which is primarily during daytime hours could be due to the model overestimation of the equatorial anomaly effect on levels of ionospheric ionization over the low latitude regions. The IRI-TEC also does not show any response to geomagnetic activity, despite the STORM option being selected in the model; the IRI model generally remains smooth and underestimates TEC during a storm. The GPS-TEC variability indicated by standard deviation seasonal averages has been presented as a basis for extending the IRI-model to accommodate TEC-variability.  相似文献   

17.
Total electron content (TEC) over Tucumán (26.9°S, 294.6°W) measured with Faraday technique during the high solar activity year 1982, is used to check IRI 2001 TEC predictions at the southern crest of the equatorial anomaly region. Comparisons with IRI 90 are also made. The results show that in general IRI overestimates TEC values around the daily minimum and underestimates it the remaining hours. Better predictions are obtained using ground ionosonde measurements as input coefficients in the IRI model. The results suggest that for hours of maximum TEC values the electron density profile is broader than that assumed by the model. The main reason for the disagreement would be the IRI shape of the electron density profile.  相似文献   

18.
This paper discusses the monthly and seasonal variation of the total electron content (TEC) and the improvement of performance of the IRI model in estimating TEC over Ethiopia during the solar maximum (2013–2016) phase employing as reference the GPS derived TEC data inferred from four GPS receivers installed in different regions of Ethiopia; Assosa (geog 10.05°N, 34.55°E, Geom. 7.01°N), Ambo (8.97°N, 37.86°E, Geom. 5.42°N), Nazret (8.57°N, 39.29°E, Geom. 4.81°N) and Arba Minch (6.06°N, 37.56°E, Geom. 2.62°N). The results reveal that, in the years 2013–2016, the highest peak GPS-derived diurnal VTEC is observed in the March equinox in 2015 over Arba Minch station. Moreover, both the arithmetic mean GPS-derived and modelled VTEC values, generally, show maximum and minimum values in the equinoctial and June solstice months, respectively in 2014–2015. However, in 2013, the minimum and maximum arithmetic mean GPS-derived values are observed in the March equinox and December solstice, respectively. The results also show that, even though overestimation of the modelled VTEC has been observed on most of the hours, all versions of the model are generally good to estimate both the monthly and seasonal diurnal hourly VTEC values, especially in the early morning hours (00:00–03:00?UT or 03:00–06:00?LT). However, it has also been shown that the IRI 2007 and IRI 2012 versions generally perform best in matching the diurnal GPS derived TEC values as compared to that of the IRI 2016 version. In addition, the IRI 2012 version with IRI2001 option for the topside electron density shows the highest overestimation of the VTEC as compared to the other options. None of the versions of the IRI model are proved to be able to capture the effects of geomagnetic storms.  相似文献   

19.
武汉地区电离层TEC和NmF2及板厚的季节变化   总被引:3,自引:2,他引:1  
通过利用武汉电离层观测站(114.4°E,30.6°N)1980-1990年对E8T-Ⅱ卫星信标的法拉第旋转测量的TEC(电子浓度总含量)数据,以及由测高仪测量的1980-1990年间的f0F2(F2层临界频率)数据,研究了武汉地区TEC,NmF2(最大电子浓度)和板厚的季节变化,同时比较了IRI和武汉单站模式在预测NmF2季节性方面的有效性.武汉单站模式在预测NmF2季节性变化方面优于IRI模式.   相似文献   

20.
In this paper, a new method of temporal extrapolation of the ionosphere total electron content (TEC) is proposed. Using 3-layer wavelet neural networks (WNNs) and particle swarm optimization (PSO) training algorithm, TEC time series are modeled. The TEC temporal variations for next times are extrapolated with the help of training model. To evaluate the proposed model, observations of Tehran GNSS station (35.69°N, 51.33°E) from 2007 to 2018 are used. The efficiency of the proposed model has been evaluated in both low and high solar activity periods. All observations of the 2015 and 2018 have been removed from the training step to test the proposed model. On the other hand, observations of these 2 years are not used in network training. According to the F10.7, the 2015 has high solar activity and the 2018 has quiet conditions. The results of the proposed model are compared with the global ionosphere maps (GIMs) as a traditional ionosphere model, international reference ionosphere 2016 (IRI2016), Kriging and artificial neural network (ANN) models. The root mean square error (RMSE), bias, dVTEC = |VTECGPS ? VTECModel| and correlation coefficient are used to assess the accuracy of the proposed method. Also, for more accurate evaluation, a single-frequency precise point positioning (PPP) approach is used. According to the results of 2015, the maximum values of the RMSE for the WNN, ANN, Kriging, GIM and IRI2016 models are 5.49, 6.02, 6.34, 6.19 and 13.60 TECU, respectively. Also, the maximum values of the RMSE at 2018 for the WNN, ANN, Kriging, GIM and IRI2016 models are 2.47, 2.49, 2.50, 4.36 and 6.01 TECU, respectively. Comparing the results of the bias and correlation coefficient shows the higher accuracy of the proposed model in quiet and severe solar activity periods. The PPP analysis with the WNN model also shows an improvement of 1 to 12 mm in coordinate components. The results of the analyzes of this paper show that the WNN is a reliable, accurate and fast model for predicting the behavior of the ionosphere in different solar conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号