首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
提出了一种基于极大验后估计理论的全球电离层预报方法,基于中国科学院电离层分析中心(CAS)提供的快速全球电离层地图(GIM),实现了1天、2天和5天GIM的预报。以国际GNSS服务组织(IGS)最终GIM、Jason测高卫星提供的电离层观测信息及全球GNSS基准站实测电离层总电子含量(TEC)为基准,评估了2008-2017年CAS电离层预报GIM在全球大陆及海洋区域的精度,并与欧洲定轨中心(CODE)、欧洲空间局(ESA)和西班牙加泰罗尼亚理工大学(UPC)的预报GIM进行对比。在评估时段内,与IGS-GIM相比,CAS预报GIM精度为2.4~3.1 TECU;与测高卫星TEC相比,CAS预报GIM的精度为5.1~6.6 TECU;与全球基准站实测TEC相比,CAS预报GIM的电离层延迟修正精度优于80%。总体来看,CAS预报GIM与CODE预报GIM精度相当,显著优于ESA和UPC预报GIM。   相似文献   

2.
Due to the differences of ionospheric modeling methods and selected tracking stations, the accuracy and consistency of Global Ionospheric Maps (GIMs) released by Ionosphere Associate Analysis Centers (IAACs) are different. In this study, we evaluate and analyze in detail the accuracy and consistency of GIMs final products provided by six IAACs from three different aspects. Firstly, the comparison of these GIMs shows that the mean bias (MEAN) is related to the modeling methods of various IAACs. The variation trend of the standard deviation (STD) is consistent with the solar activities, and accompanied by certain seasonal and annual periodic variations. The MEAN between IGS and each center is about −1.3 to 1.0 TECU, and the STD is about 1.4–2.5 TECU. Secondly, the validation with GPS TEC shows that the STD of CODE is the smallest at various latitudes, and the STD is about 0.7–4.5 TECU. Thirdly, The validation with the Jason2 VTEC shows that the STD between Jason2 and IAACs is about 4.4–5.2 TECU. In addition, the STD between Jason2 and six GIMs in the areas with more tracking stations is better than that of the regions with fewer tracking stations in different latitude regions. Regardless of whether the tracking stations are more or less, the MEAN and STD in high solar activity are larger than in low solar activity.  相似文献   

3.
Ionospheric response during the annular solar eclipse of June 21, 2020, has been examined in terms of the Total Electron Content (TEC) obtained from six Global Positioning System (GPS) receivers positioned in the Chinese-Taiwanese region. We have shown TEC variation from satellites designated by PRNs (Pseudo-Random Noise code) 2, 6, and 19. PRN wise TEC trend was observed to depend upon satellite-pass trajectory to the receiver's location during the eclipse period. A time lag of ~15–30 min is also observed in maximum TEC decrement after the phase of maximum eclipse. Instead of the percentage of eclipse magnitude, a reduction in TEC is seen more for the station for which the orbital track of respective satellites was in closer view relative to receivers for more hours of eclipse window. Additionally, the eclipse day diurnal variations are compared with the pre-eclipse day TEC trend, and observed results show a clear decrease in TEC values at all chosen stations after the eclipse onset then reached the lowest value a few minutes afterward the maximum eclipse phase.  相似文献   

4.
利用中国区域内五个GPS台站(一个台站处于日全食区域、四个台站处于日偏食区域)观测数据, 研究2009年7月22日日全食期间电离层总电子含量(TEC)的变化, 结果表明, 日全食期间, 电离层TEC值经历了下降和恢复的过程, 最小TEC相对于最大食偏的时间延迟约为1~10min; 台站测得最小TEC的星下点(IPP)越靠近日全食带TEC下降量越大, 在日食期间武汉站(114.35°E, 30.53°N) TEC相对于各参考日期的TEC, 其平均下降量最大, 达到4.58TECU.   相似文献   

5.
GPS observations from EUREF permanent GPS network were used to observe the response of TEC (Total Electron Content) to the total solar eclipse on October 3, 2005, under quiet geomagnetic conditions of the daytime ionosphere. The effect of the eclipse was detected in diurnal variations and more distinctly in the variations of TEC along individual satellite passes. The trough-like variations with a gradual decrease and followed by an increase of TEC at the time of the eclipse were observed over a large region. The depression of TEC amounted to 3–4 TECU. The maximum depression was observed over all stations located at the maximum path of the solar eclipse. The delay of a minimum level of TEC with respect to the maximum phase of the eclipse was about 20–30 min.  相似文献   

6.
The International Reference Ionosphere (IRI) empirical model provides valuable data for many fields including space and navigation applications. Since the IRI model gives the ionospheric parameters in the altitude range from 50?km to 2000?km, researchers focused on the IRI-PLAS model which is the plasmasphere extension of the IRI model. In this study, Total Electron Content (TEC) prediction performance of the IRI-PLAS model was examined at a global scale using the location of globally distributed 9 IGS stations. Besides the long term (01.01.2015–31.12.2015) behavior of the model, TEC predictions during the equinox and solstice days of 2014–2017 were also tested. IRI-PLAS-TEC values were examined in comparison with GPS-TEC data. Hourly interval of yearly profile exhibits that when the geomagnetic and solar active days are ignored, differences between IRI-PLAS-TEC and GPS-TEC are rather small (~2–3 TECU) at stations in the northern hemisphere, generally ~4–5 TECU level at the southern hemisphere stations and reaching above 10 TECU for few hours. While the IRI-PLAS-TEC generally overestimates the GPS-TEC at southern hemisphere stations during quiet days, the model-derived TEC underestimates GPS-TEC during solar active days. IRI-PLAS-TEC and GPS-TEC values exhibit similar trend for the equinoxes 21 March and 23 September which refer equivalent conditions.  相似文献   

7.
For more than a decade, ionospheric research over South Africa has been carried out using data from ionosondes geographically located at Madimbo (28.38°S, 30.88°E), Grahamstown (33.32°S, 26.50°E), and Louisvale (28.51°S, 21.24°E). The objective has been modelling the bottomside ionospheric characteristics using neural networks. The use of Global Navigation Satellite System (GNSS) data is described as a new technique to monitor the dynamics and variations of the ionosphere over South Africa, with possible future application in high frequency radio communication. For this task, the University of New Brunswick Ionospheric Modelling Technique (UNB-IMT) was applied to compute midday (10:00 UT) GNSS-derived total electron content (GTEC). GTEC values were computed using GNSS data for stations located near ionosondes for the years 2002 and 2005 near solar maximum and minimum, respectively. The GTEC was compared with the midday ionosonde-derived TEC (ITEC) measurements to validate the UNB-IMT results. It was found that the variation trends of GTEC and ITEC over all stations are in good agreement and show a pronounced seasonal variation for the period near solar maximum, with maximum values (∼80 TECU) around autumn and spring equinoxes, and minimum values (∼22 TECU) around winter and summer. Furthermore, the residual ΔTEC = GTEC − ITEC was computed. It was evident that ΔTEC, which is believed to correspond to plasmaspheric electron content, showed a pronounced seasonal variation with maximum values (∼20 TECU) around equinoxes and minimum (∼5 TECU) around winter near solar maximum. The equivalent ionospheric and total slab thicknesses were also computed and comprehensively discussed. The results verified the use of UNB-IMT as one of the tools for future ionospheric TEC research over South Africa.  相似文献   

8.
Global Navigation Satellite System (GNSS) measurements of the Total Electron Content (TEC) from local (Dourbes, 50.1°N, 04.6°E) and European IGS (International GNSS Service) stations were used to obtain the TEC changes during the geomagnetic storms of the latest solar activity cycle. A common epoch analysis, with respect to geomagnetic storm intensity, season, and latitude, was performed on data representing nearly 300 storm events. In general, the storm-time behaviour of TEC shows clear positive and negative phases, relative to the non-storm (median) behaviour, with amplitudes that tend to increase during more intense storms. The most pronounced positive phase is observed during winter, while the strongest and yet shortest negative phase is detected during equinox. Average storm-time patterns in the TEC behaviour are deduced for potential use in ionosphere prediction services.  相似文献   

9.
In this research, as part of working towards improving the IRI over equatorial region, the total electron content (TEC) derived from GPS measurements and IRI-2007 TEC predictions at Chumphon station (10.72°N, 99.37°E), Thailand, during 2004–2006 is analyzed. The seasonal variation of the IRI-2007 TEC predictions is compared with the TEC from the IRI-2007 TEC model with the option of the actual F2 plasma frequency (foF2) measurements as well as the TEC from the GPS and International GNSS service (IGS). The Chumphon station is located at the equatorial region and the low latitude of 3.22°N. For a declining phase of the solar cycle (2004–2006), the study shows that the IRI-2007 TEC underestimates the IRI-2007 TEC with the foF2 observation at the nighttime by about 5 TECU. The maximum differences are about 15 TECU during daytime and 5 TECU during nighttime. The overestimation is more evident at daytime than at nighttime. When compared in terms of the root-mean square error (RMSE), we find that the highest RMSE between GPS TEC and IRI 2007 TEC is 14.840 TECU at 1230 LT in 2004 and the lowest average between them is 1.318 TECU at 0630 LT in 2006. The noon bite-out phenomena are clearly seen in the IRI-2007 TEC with and without optional foF2 measurements, but not on the GPS TEC and IGS TEC. The IRI TEC with optional foF2 measurements gives the lowest RMSE values between IRI TEC predicted and TEC measurement. However, the TEC measurements (GPS TEC and IGS TEC) are more correct to use at Chumphon station.  相似文献   

10.
An annular solar eclipse occurred over the Indian subcontinent during the afternoon hours of January 15, 2010. This event was unique in the sense that solar activity was minimum and the eclipse period coincides with the peak ionization time at the Indian equatorial and low latitudes. The number of GPS receivers situated along the path of solar eclipse were used to investigate the response of total electron content (TEC) under the influence of this solar eclipse. These GPS receivers are part of the Indian Satellite Based Augmentation System (SBAS) named as ‘GAGAN’ (GPS Aided Geo Augmented Navigation) program. The eight GPS stations located over the wide range of longitudes allows us to differentiate between the various factors induced due to solar eclipse over the equatorial and low latitude ionosphere. The effect of the eclipse was detected in diurnal variations of TEC at all the stations along the eclipse path. The solar eclipse has altered the ionospheric behavior along its path by inducing atmospheric gravity waves, localized counter-electrojet and attenuation of solar radiation intensity. These three factors primarily control the production, loss and transport of plasma over the equatorial and low latitudes. The localized counter-electrojet had inhibited the equatorial ionization anomaly (EIA) in the longitude belt of 72°E–85°E. Thus, there was a negative deviation of the order of 20–40% at the equatorial anomaly stations lying in this ‘inhibited EIA region’. The negative deviation of only 10–20% is observed for the stations lying outside the ‘inhibited EIA region’. The pre-eclipse effect in the form of early morning enhancement of TEC associated with atmospheric gravity waves was also observed during this solar eclipse. More clear and distinctive spatial and temporal variations of TEC were detected along the individual satellite passes. It is also observed that TEC starts responding to the eclipse after 30 min from start of eclipse and the delay of the maximum TEC deviation from normal trend with respect to the maximum phase of the eclipse was close to one hour in the solar eclipse path.  相似文献   

11.
The Earth's ionosphere and especially its equatorial part is a highly dynamical medium. Geostationary satellites are known to be a powerful tool for ionospheric studies. Recent developments in BDS-GEO satellites allow such studies on the new level due to the best noise pattern in TEC estimations, which corresponds to those of GPS/GLONASS systems. Here we used BDS-GEO satellites to demonstrate their capability for studying equatorial ionosphere variability on different time scales. Analyzing data from the equatorial SIN1 IGS station we present seasonal variations in geostationary slant TEC for the periods of high (October 2013 - October 2014) and low (January 2017 - January 2018) solar activity, which show semi-annual periodicity with amplitudes about 10 TECU during solar maximum and about 5 TECU during the solar minimum. The 27-day variations are also prominent in geostationary slant TEC variations, which correlates quite well with the variations in solar extreme UV radiation. We found semi-annual pattern in small scale ionospheric disturbances evaluated based on geostationary ROTI index: maximal values correspond to spring and fall equinoxes and minimum values correspond to summer and winter solstices. The seasonal asymmetry in ROTI values was observed: spring equinox values were almost twice as higher than fall equinox ones. We also present results on the 2017 May 28–29 G3 geomagnetic storm, when ~30 TECU positive anomaly was recorded, minor and final major sudden stratospheric warmings in February and March 2016, with positive daytime TEC anomalies up to 15–20 TECU, as well as the 2017 September 6 X9.3 solar flare with 2 TECU/min TEC rate. Our results show the large potential of geostationary TEC estimations with BDS-GEO signals for continuous monitoring of space weather effects in low-latitude and equatorial ionosphere.  相似文献   

12.
大耀斑期间向日面电离层总电子含量的响应个例分析   总被引:3,自引:0,他引:3  
利用2001年4月15日1336UT耀斑爆发期间向日面GPS观测数据提取的总电子含量的时间变化曲线。分析了向日面电离层对这次耀斑的响应特点.结果表明,耀斑期间向日面电离层出现了总电子含量突增事件.最大总电子含量增加量约为2.6TECU,在0600LT和1800LT都观测到了总电子含量突增,世增加幅度仅为0.5-1TECU.在高纬地区,由于电离层闪烁,从TEC时间变化曲线提取不出来总电子含量增加值.从各卫星星下点处的TEC增加量和各星下点处的太阳天顶角的关系可以看到,TEC增加量与太阳天顶角有关,太阳天顶角越大,TEC增幅越小。另外,从总电子含量时间变化率曲线上还观测到了时间同步的小尺度扰动,通过与耀斑期间硬X射线辐射通量的比较,发现两者有明显的相关性,电离层中的这种扰动与耀斑期间的硬X射线或远紫外辐射有关.  相似文献   

13.
The solar eclipse of 15 January 2010 was an annular eclipse of the Sun with a maximum magnitude of 0.96 at 1.62°N, 69.29°E. To study the effect of this solar eclipse on the ionosphere the GPS data recorded at three different Indian stations Varanasi (Geographic latitude 25°, 16′N, longitude 82°, 59′E), Hyderabad (Geographic latitude 17°, 20′N, longitude 78°, 30′E) and Bengaluru (Geographic latitude 12°, 58′N, longitude 77°, 33′E) have been used to retrieve ionospheric total electron content (TEC). The ionospheric response to this rare event has been studied in terms of GPS-derived TEC observed at all the three Indian stations. A significant reduction in TEC reflected by all PRNs at all the three stations has been observed. The magnitude of the reduction in VTEC compared to quiet mean VTEC depends on latitude as well as longitude. The amount of reduction observed from different satellites (PRN) is different and depends on the location of the satellite from the solar eclipse path.  相似文献   

14.
PPP (Precise Point Positioning) is a GNSS (Global Navigation Satellite Systems) positioning method that requires SSR (State Space Representation) corrections in order to provide solutions with an accuracy of centimetric level. The so-called RT-PPP (Real-time PPP) is possible thanks to real-time precise SSR products, for orbits and clocks, provided by IGS (International GNSS Service) and its associate analysis centers such as CNES (Centre National d'Etudes Spatiales). CNES SSR products also enable RT-PPP with integer ambiguity resolution. In GNSS related literature, PPP with ambiguity resolution (PPP-AR) in real-time is often referred as PPP-RTK (PPP – Real Time Kinematic). PPP-WIZARD (PPP - With Integer and Zero-difference Ambiguity Resolution Demonstrator) is a software that is made available by CNES. This software is capable of performing PPP-RTK. It estimates slant ionospheric delays and other GNSS positioning parameters. Since ionospheric effects are spatially correlated by GNSS data from active networks, it is possible to model and provide ionospheric delays for any position in the network coverage area. The prior knowledge ionospheric delays can reduce positioning convergence for PPP-RTK users. Real-time ionospheric models could benefit from highly precise ionospheric delays estimated in PPP-AR. In this study, we demonstrate that ionospheric delays obtained throughout PPP-AR estimation are actu ally ionospheric observables. Ionospheric observables are biased by an order of few meters caused by the receiver hardware biases. These biases prohibit the use of PPP-WIZARD ionospheric delays to produce ionospheric models. Receiver biases correction is essential to provide ionospheric delays while using PPP-AR based ionospheric observables. In this contribution, a method was implemented to estimate and mitigate receiver hardware biases influence on slant ionospheric observables from PPP-AR. In order to assess the proposed approach, PPP-AR data from 12 GNSS stations were processed over a two-month period (March and April 2018). A comparison between IGS ionospheric products and PPP-AR based ionospheric observables corrected for receiver biases, resulted in a mean of differences of −39 cm and 51 cm standard deviation. The results are consistent with the accuracy of the IGS ionospheric products, 2–8 TECU, considering that 1 TECU is ~16 cm in L1. In another analysis, a comparison of ionospheric delays from 5 pairs of short baselines GNSS stations found an agreement of 0.001 m in mean differences with 22 cm standard deviation after receiver biases were corrected. Therefore, the proposed solution is promising and could produce high quality (1–2 TECU) slant ionospheric delays. This product can be used in a large variety of modeling approaches, since ionospheric delays after correction are unbiased. These results indicate that the proposed strategy is promising, and could benefit applications that require accuracy of 1–2 TECU (~16–32 cm in L1).  相似文献   

15.
2009年1月平流层爆发性增温期间全球电离层响应的研究   总被引:1,自引:0,他引:1  
2009年1月平流层爆发性增温(Stratospheric Sudden Warming, SSW)事件是有记录以来最强、持续时间最长的一次主增温事件(Major Warming Event, MWE), 期间太阳活动和地磁活动均处于较低的水平, 因此非常有利于研究电离层对平流层增温事件的响应情况. 本文利用COSMIC (Constellation Observing System for Meteorology, Ionosphere, and Climate)系统提供的掩星数据, 使用Kriging方法分别构建了此次SSW期间及平静期的电离层NmF2, hmF2和110~750km高度范围的垂直积分TEC (简称VTEC)地图, 同时从全球定位导航卫星系统服务组织(International GNSS Service, IGS)发布的全球电离层TEC地图(Global Ionospheric Maps, GIMs)中提取了日固坐标系(Sun-fixed, 地磁纬度和地方时)下全球TEC地图. 通过对比发现, SSW期间与平静期相比, 地磁纬度中低纬电离层参数存在早晨上升, 下午和夜间下降的现象. 利用OSTM/JASON-2卫星高度计观测值进行验证后的结果显示, 此前研究均未有提及的夜间时段电离层参数NmF2, hmF2和TEC (VTEC和IGS TEC)的下降现象的确存在.   相似文献   

16.
This paper presents the response of the ionosphere during the intense geomagnetic storms of October 12–20, 2016 and May 26–31, 2017 which occurred during the declining phase of the solar cycle 24. Total Electron Content (TEC) from GPS measured at Indore, Calcutta and Siliguri having geomagnetic dips varying from 32.23°N, 32°N and 39.49°N respectively and at the International GNSS Service (IGS) stations at Lucknow (beyond anomaly crest), Hyderabad (between geomagnetic equator and northern crest of EIA) and Bangalore (near magnetic equator) in the Indian longitude zone have been used for the storms. Prominent peaks in diurnal maximum in excess of 20–45 TECU over the quiet time values were observed during the October 2016 storm at Lucknow, Indore, Hyderabad, Bangalore and 10–20 TECU for the May 2017 storm at Siliguri, Indore, Calcutta and Hyderabad. The GUVI images onboard TIMED spacecraft that measures the thermospheric O/N2 ratio, showed high values (O/N2 ratio of about 0.7) on October 16 when positive storm effects were observed compared to the other days during the storm period. The observed features have been explained in terms of the O/N2 ratio increase in the equatorial thermosphere, CIR-induced High Speed Solar Wind (HSSW) event for the October 2016 storm. The TEC enhancement has also been explained in terms of the Auroral Electrojet (AE), neutral wind values obtained from the Horizontal Wind Model (HWM14) and equatorial electrojet strength from magnetometer data for both October 2016 and May 2017 storms. These results are one of the first to be reported from the Indian longitude sector on influence of CME- and CIR-driven geomagnetic storms on TEC during the declining phase of solar cycle 24.  相似文献   

17.
We present the results derived from measuring fundamental parameters of the ionospheric response to the August 11, 1999 total solar eclipse. Our study is based on using the data from about 70 GPS stations located in the neighbourhood of the eclipse totality phase in Europe. The key feature of our data is a higher reliability of determining the main parameters of the response to eclipse which is due to high space-time resolution and to the increased sensitivity of detection of ionospheric disturbances inherent in the GPS-array method which we are using. Our analysis revealed a well-defined effect of a decrease (depression) of the total electron content (TEC) for all GPS stations. The depth and duration of the TEC depression were found to be 0.2–0.3 TECU and 60 min, respectively. The delay τ between minimum TEC values with respect to the totality phase near the eclipse path increased gradually from 4 min in Greenwich longitude (10:40 UT, LT) to 18 min at the longitude 16° (12:09 LT). The local time-dependence of τ that is revealed in this paper is in agreement with theoretical estimates reported in (Stubbe, 1970).  相似文献   

18.
In this paper, a new method of temporal extrapolation of the ionosphere total electron content (TEC) is proposed. Using 3-layer wavelet neural networks (WNNs) and particle swarm optimization (PSO) training algorithm, TEC time series are modeled. The TEC temporal variations for next times are extrapolated with the help of training model. To evaluate the proposed model, observations of Tehran GNSS station (35.69°N, 51.33°E) from 2007 to 2018 are used. The efficiency of the proposed model has been evaluated in both low and high solar activity periods. All observations of the 2015 and 2018 have been removed from the training step to test the proposed model. On the other hand, observations of these 2 years are not used in network training. According to the F10.7, the 2015 has high solar activity and the 2018 has quiet conditions. The results of the proposed model are compared with the global ionosphere maps (GIMs) as a traditional ionosphere model, international reference ionosphere 2016 (IRI2016), Kriging and artificial neural network (ANN) models. The root mean square error (RMSE), bias, dVTEC = |VTECGPS ? VTECModel| and correlation coefficient are used to assess the accuracy of the proposed method. Also, for more accurate evaluation, a single-frequency precise point positioning (PPP) approach is used. According to the results of 2015, the maximum values of the RMSE for the WNN, ANN, Kriging, GIM and IRI2016 models are 5.49, 6.02, 6.34, 6.19 and 13.60 TECU, respectively. Also, the maximum values of the RMSE at 2018 for the WNN, ANN, Kriging, GIM and IRI2016 models are 2.47, 2.49, 2.50, 4.36 and 6.01 TECU, respectively. Comparing the results of the bias and correlation coefficient shows the higher accuracy of the proposed model in quiet and severe solar activity periods. The PPP analysis with the WNN model also shows an improvement of 1 to 12 mm in coordinate components. The results of the analyzes of this paper show that the WNN is a reliable, accurate and fast model for predicting the behavior of the ionosphere in different solar conditions.  相似文献   

19.
Results pertaining to the latitudinal extent of the ionospheric irregularities in terms of TEC depletions have been presented for the two nights namely; 28 October 2004 and 7 February 2005. This study has been carried out using the GPS–TEC over the Indian low latitude stations, at Udaipur, Hyderabad and Bengaluru. This is probably the first report of simultaneous GPS observation of TEC depletions over different latitudes from the Indian sector. The results show that the amplitude of TEC depletions due to the equatorial spread F may vary with time and the location of the observation. The maximum amplitude of the TEC depletion has been found to be about 30 TECU over Hyderabad. The depletions in TEC are found to be field aligned.  相似文献   

20.
2017年9月8日发生了一次强磁暴,Kp指数最大值达到8.利用区域电离层格网模型(Regional Ionosphere Map,RIM)和区域ROTI(Rate of TEC Index)地图,分析了磁暴期间中国及其周边地区电离层TEC扰动特征和低纬地区电离层不规则体的产生与发展情况,同时利用不同纬度IGS(International GNSS Service)测站BJFS(39.6°N,115.9°E),JFNG(30.5°N,114.5°E)和HKWS(22.4°N,114.3°E)的GPS双频观测值,获取各测站的ROTI和DROT(Standard Deviation of Differential ROT)指数变化趋势.结果表明:此次磁暴发生期间电离层扰动先以正相扰动为主,主要发生在中低纬区域,dTEC(differential TEC)最大值达到14.9TECU,随后电离层正相扰动逐渐衰减,在低纬区域发生电离层负相扰动,dTEC最小值达到-7.2TECU;在12:30UT-13:30UT时段,中国南部低纬地区发生明显的电离层不规则体事件;相比BJFS和JFNG两个测站,位于低纬的HKWS测站的ROTI和DROT指数变化更为剧烈,这表明电离层不规则体结构存在纬度差异.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号