首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report the results of ionospheric measurements from DPS-4 installed at Multan (Geog coord. 30.18°N, 71.48°E, dip 47.4°). The variations in F2-layer maximum electron density NmF2 and its peak height hmF2 are studied during the deep solar minimum between cycles 23 & 24 i.e 2008–2009 with comparisons conducted with the International Reference Ionosphere (IRI) versions 2012 & 2016. We find that the hmF2 observations peak around the pre-sunrise and sunrise hours depending on the month. Seasonally, the daytime variation of NmF2 is higher in the Equinox and Summer, while daytime hmF2 are slightly higher in the Equinox and Winter. High values of hmF2 around midnight are caused by an increase of upward drifts produced by meridional winds. The ionosphere over Multan, which lies at the verge of low and mid latitude, is affected by both E×B drifts and thermospheric winds as evident from mid-night peaks and near-sunrise dips in hmF2. The results of the comparison of the observed NmF2 and hmF2 for the year 2008–2009 with the IRI-2012 (both NmF2 and hmF2) and IRI-2016 (only hmF2) estimates indicate that for NmF2, IRI-2012 with Consultative Committee International Radio (CCIR) option produces values in better agreement with observed data. Whereas, for hmF2, IRI-2016 with both International Union of Radio Science (URSI) and CCIR SHU-2015 options, predicts well for nighttime hours throughout the year. However, the IRI-2012 with CCIR option produces better agreement with data during daytime hours. Furthermore, IRI-2012 with CCIR option gives better results during Equinox months, whereas, IRI-2016 with both URSI and CCIR SHU-2015 options predict well for Winter and Summer.  相似文献   

2.
This paper examines the performances of NeQuick2, the latest available IRI-2016, IRI-2012 and IRI-2007 models in describing the monthly and seasonal mean total electron content (TEC) over the East African region. This is to gain insight into the success of the various model types and versions at characterizing the ionosphere within the equatorial ionization anomaly. TEC derived from five Global Positioning System (GPS) receivers installed at Addis Ababa (ADD, 5.33°N, 111.99°E Geog.), Asab (ASAB, 8.67°N, 116.44°E Geog.), Ambo (ABOO, 5.43°N, 111.05°E Geog.), Nairobi (RCMN, ?4.48°N, 108.46°E Geog.) and Nazret (NAZR, 4.78°N, 112.43°E Geog.), are compared with the corresponding values computed using those models during varying solar activity period (1998 and 2008–2015). We found that different models describe the equatorial and anomaly region ionosphere best depending on solar cycle, season and geomagnetic activity levels. Our results show that IRI-2016 is the best model (compared to others in terms of discrepancy range) in estimating the monthly mean GPS-TEC at NAZR, ADD and RCMN stations except at ADD during 2008 and 2012. It is also found that IRI-2012 is the best model in estimating the monthly mean TEC at ABOO station in 2014. IRI show better agreement with observations during June solstice for all the years studied at ADD except in 2012 where NeQuick2 better performs. At NAZR, NeQuick2 better performs in estimating seasonal mean GPS-TEC during 2011, while IRI models are best during 2008–2009. Both NeQuick2 and IRI models underestimate measured TEC for all the seasons at ADD in 2010 but overestimate at NAZR in 2009 and RCMN in 2008. The periodic variations of experimental and modeled TEC have been compared with solar and geomagnetic indices at ABOO and ASAB in 2014 and results indicate that the F10.7 and sunspot number as indices of solar activity seriously affects the TEC variations with periods of 16–32?days followed by the geomagnetic activity on shorter timescales (roughly periods of less than 16?days). In this case, NeQuick2 derived TEC shows better agreement with a long term period variations of GPS-TEC, while IRI-2016 and IRI-2007 show better agreement with observations during short term periodic variations. This indicates that the dependence of NeQuick2 derived TEC on F10.7 is seasonal. Hence, we suggest that representation of geomagnetic activity indices is required for better performance over the low latitude region.  相似文献   

3.
We have compared the TEC obtained from the IRI-2012 model with the GPS derived TEC data recorded within southern crest of the EIA in the Eastern Africa region using the monthly means of the 5 international quiet days for equinoxes and solstices months for the period of 2012 – 2013. GPS-derived TEC data have been obtained from the Africa array and IGS network of ground based dual-frequency GPS receivers from four stations (Kigali (1.95°S, 30.09°E; Geom. Lat. 11.63°S), Malindi (2.99°S, 40.19°E; Geom. Lat. 12.42°S), Mbarara (0.60°S, 30.74°E; Geom. Lat. 10.22°S) and Nairobi (1.22°S, 36.89°E; Geom. Lat. 10.69°S)) located within the EIA crest in this region. All the three options for topside Ne of IRI-2012 model and ABT-2009 for bottomside thickness have been used to compute the IRI TEC. Also URSI coefficients were considered in this study. These results are compared with the TEC estimated from GPS measurements. Correlation Coefficients between the two sets of data, the Root-Mean Square Errors (RMSE) of the IRI-TEC from the GPS-TEC, and the percentage RMSE of the IRI-TEC from the GPS-TEC have been computed. Our general results show that IRI-2012 model with all three options overestimates the GPS-TEC for all seasons and at all stations, and IRI-2001 overestimates GPS-TEC more compared with other options. IRI-Neq and IRI-01-corr are closely matching in most of the time. The observation also shows that, GPS TEC are underestimated by TEC from IRI model during noon hours, especially during equinoctial months. Further, GPS-TEC values and IRI-TEC values using all the three topside Ne options show very good correlation (above 0.8). On the other hand, the TEC using IRI-Neq and IRI-01- corr had smaller deviations from the GPS-TEC compared to the IRI-2001.  相似文献   

4.
The ionospheric total electron content (TEC) in both northern and southern Equatorial anomaly regions are examined by using the Global Positioning System (GPS) based TEC measurements around 73°E Longitude in the Asian sector. The TEC contour charts obtained at SURAT (21.16°N; 72.78°E; 12.9°N Geomagnetic Lat.) and DGAR (7.27°S; 72.37°E; 15.3°S Geomagnetic Lat.) over 73°E longitude during a very low solar activity phase (2009) and a moderate solar activity (2012) phase are used in this study. The results show the existence of hemispheric asymmetry and the effects of solar activity on the EIA crest in occurrence time, location and strength. The results are also compared with the TEC derived by IRI-2016 Model and it is found that the North-South asymmetry at the EIA region is clearly depicted by IRI-2016 with some discrepancies (up to 20% in the northern hemisphere at SURAT and up to 40% in the southern hemisphere at DGAR station for June Solstice and up to 10% both for SURAT and DGAR for December Solstice). This discrepancy in the IRI-2016 model is found larger during the year 2012 than that during the solar minimum year 2009 at both the hemispheres. Further, an asymmetry index, (Ai) is determined to illustrate the North-South asymmetry observed in TEC at EIA crest. The seasonal, annual and solar flux dependence of this index are investigated during both solstices and compared with the TEC derived by IRI.  相似文献   

5.
The ionospheric Nighttime Winter Anomaly (NWA) is a feature observed in the Northern Hemisphere at the American and in the Southern Hemisphere at the Asian longitude sector under low solar activity conditions. Jakowski et al. (2015) analyzed ground-based GPS derived TEC and peak electron density data from radio occultation measurements on Formosat-3/COSMIC satellites and confirmed the persistence of the phenomenon. Further, they assumed that Mid-latitude Summer Nighttime Anomaly (MSNA) and related special anomalies such as the Weddell Sea Anomaly (WSA) and the Okhotsk Sea Anomaly (OSA) are closely related to the NWA via enhanced wind-induced uplifting of the ionosphere. The aim of this paper is to study the factors causing these anomalies and also to investigate if these anomalies are re-produced by IRI. The results show that IRI model does include the NWA effect, though at a different longitude and could be improved for better predictions. The IRI-2016 model does show WSA in TEC but not in NmF2. Further, the IRI-2016 model could clearly predict the OSA both in NmF2 and TEC.  相似文献   

6.
In this research, as part of working towards improving the IRI over equatorial region, the total electron content (TEC) derived from GPS measurements and IRI-2007 TEC predictions at Chumphon station (10.72°N, 99.37°E), Thailand, during 2004–2006 is analyzed. The seasonal variation of the IRI-2007 TEC predictions is compared with the TEC from the IRI-2007 TEC model with the option of the actual F2 plasma frequency (foF2) measurements as well as the TEC from the GPS and International GNSS service (IGS). The Chumphon station is located at the equatorial region and the low latitude of 3.22°N. For a declining phase of the solar cycle (2004–2006), the study shows that the IRI-2007 TEC underestimates the IRI-2007 TEC with the foF2 observation at the nighttime by about 5 TECU. The maximum differences are about 15 TECU during daytime and 5 TECU during nighttime. The overestimation is more evident at daytime than at nighttime. When compared in terms of the root-mean square error (RMSE), we find that the highest RMSE between GPS TEC and IRI 2007 TEC is 14.840 TECU at 1230 LT in 2004 and the lowest average between them is 1.318 TECU at 0630 LT in 2006. The noon bite-out phenomena are clearly seen in the IRI-2007 TEC with and without optional foF2 measurements, but not on the GPS TEC and IGS TEC. The IRI TEC with optional foF2 measurements gives the lowest RMSE values between IRI TEC predicted and TEC measurement. However, the TEC measurements (GPS TEC and IGS TEC) are more correct to use at Chumphon station.  相似文献   

7.
In the present work values of peak electron density (NmF2) and height of F2 ionospheric layer (hmF2) over Tehran region at a low solar activity period are compared with the predictions of the International Reference Ionosphere models (IRI-2001 and IRI-2007). Data measured by a digital ionosonde at the ionospheric station of the Institute of Geophysics, University of Tehran from July 2006 to June 2007 are used to perform the calculations. Formulations proposed by  and  are utilized to calculate the hmF2. The International Union of Radio Science (URSI) and International Radio Consultative Committee (CCIR) options are employed to run the IRI-2001 and IRI-2007 models. Results show that both IRI-2007 and IRI-2001 can successfully predict the NmF2 and hmF2 over Tehran region. In addition, the study shows that predictions of IRI-2007 model with CCIR coefficient has closer values to the observations. Furthermore, it is found that the monthly average of the percentage deviation between the IRI models predictions and the values of hmF2 and NmF2 parameters are less than 10% and 21%, respectively.  相似文献   

8.
In this study, Total Electron Content (TEC) observations acquired by a GNSS receiver installed at Sonmiani (Geog. Coord. 25.19°N, 66.74°E, Geomag. Coord. 17.62°N, 141.5°E) are being reported for the first time. The data utilized is hourly instantaneous TEC values during 10 International Quiet Days (IQDs) per month from Jul-14 to Jun-15, totaling 120 observation days for monitoring nominal TEC. The findings confirm the semi-annual trend of TEC over Sonmiani, which lies at the northern crest of Equatorial Ionization Anomaly (EIA) region. The TEC measurements are then compared with NeQuick-2 and International Reference Ionosphere (IRI-2012) models. It was found that the TEC values derived from NeQuick-2 are in better agreement with GNSS measurements than those from IRI-2012. The TEC measurements also show seasonal variation which is largest during Equinox months. The TEC value in Dec solstice is higher than the Jun solstice, which confirms that the seasonal anomaly is playing a major role in this region during the course of study.  相似文献   

9.
Monthly median values of hourly total electron content (TEC) is obtained with GPS at a station near northern anomaly crest, Rajkot (geog. 22.29°N, 70.74°E; geomag. 14.21°N, 144.9°E) to study the variability of low latitude ionospheric behavior during low solar activity period (April 2005 to March 2006). The TEC exhibit characteristic features like day-to-day variability, semiannual anomaly and noon bite out. The observed TEC is compared with latest International Reference Ionosphere (IRI) – 2007 model using options of topside electron density, NeQuick, IRI01-corr and IRI-2001 by using both URSI and CCIR coefficients. A good agreement of observed and predicted TEC is found during the daytime with underestimation at other times. The predicted TEC by NeQuick and IRI01-corr is closer to the observed TEC during the daytime whereas during nighttime and morning hours, IRI-2001 shows lesser discrepancy in all seasons by both URSI and CCIR coefficients.  相似文献   

10.
武汉地区电离层TEC和NmF2及板厚的季节变化   总被引:3,自引:2,他引:1  
通过利用武汉电离层观测站(114.4°E,30.6°N)1980-1990年对E8T-Ⅱ卫星信标的法拉第旋转测量的TEC(电子浓度总含量)数据,以及由测高仪测量的1980-1990年间的f0F2(F2层临界频率)数据,研究了武汉地区TEC,NmF2(最大电子浓度)和板厚的季节变化,同时比较了IRI和武汉单站模式在预测NmF2季节性方面的有效性.武汉单站模式在预测NmF2季节性变化方面优于IRI模式.   相似文献   

11.
Empirical modeling including empirical model for the total electron content (TEC) is important for the study of the ionosphere and practical applications. In this paper goodness of new Neustrelitz Global Model (then NGM) at low latitudes is studied. The NGM model includes such parameters as the maximal electron density (NmF2) and altitude of the maximum (hmF2). As of today, besides NGM there are several empirical models for NmF2 and hmF2. Therefore, a comparison of these parameters of the NGM model, not only with the experimental data, but also with two versions of the International Reference Ionosphere (the IRI model): IRI2001 and IRI-Plas would be instructive. Because the NGM model incorporates special factor describing the equatorial anomaly, the comparison in lower latitude areas is particularly interesting. As one can see from the presented example of the data from low latitude stations located in the northern and southern hemispheres near the Greenwich meridian, the NGM model may have certain advantages over the IRI model versions. In particular, NGM TEC is preferable regardless of solar activity level while NGM NmF2 is only preferable under high solar activity conditions. Next, NGM equivalent slab thickness of the ionosphere: τ(NGM) = TEC(NGM)/NmF2(NGM) has been calculated and tested to answer the question whether τ(NGM) can be used as a proxy of the slab thickness of the ionosphere for an empirical modeling. The answer is positive for the near equatorial stations and periods of high solar activity, and under such conditions predicted τ(NGM) can be used for deriving NmF2 from the experimental values of TEC(CODE) in real time.  相似文献   

12.
利用广州站(23.2°N, 113.3°E) GPS双频接收机监测的电离层TEC数据和IRI-2007模型不同电离层输入参数计算得到的TEC预测值, 对比分析了太阳活动低年(2008年)广州地区TEC的变化特征. 结果表明, TEC观测值周日变化在16:00LT左右达到最大值, 而IRI-TEC最大值出现时间较GPS-TEC提前1h左右. TEC季节变化在春秋分较高, 两至季节较低, 表现出明显的半年特性和季节依赖性, 并出现冬季异常现象. IRI-TEC与GPS-TEC在白天具有较好的一致性, 夜间偏差较大. 不同电离层输入参数得到的TEC预测值也相差较大, 选用顶部电子密度参数NeQuick、底部厚度参数B0 Table并用URSI系数计算F2层峰值参数时, 能较好地反映TEC观测值的变化特征. 在对磁暴的响应上, 预测值无明显变化, 观测值则有比较明显的表现. 通过对比, 初步分析了利用IRI-2007模型预测TEC在广州地区的适用性, 并给出了合理的参数选择方案.   相似文献   

13.
International Reference Ionosphere (IRI) model is the widely used empirical model for ionospheric predictions, especially TEC which is an important parameter for radio navigation and communication. The Fortran based IRI-2007 does not support real-time interactive visualization and debugging. Therefore, the source code is converted into Matlab and is validated for the purposes of this study. This facilitates easy representation of results and for near real-time implementation of IRI in the applications including spacecraft launching, now casting, pseudolite based navigation systems etc. In addition, the vertical delay results over the equatorial region derived from IRI and GPS data of three IGS stations namely Libreville (Garbon, Africa), Brasilia (Brazil, South America) and Hyderabad (India, Asia) are compared. As the IRI model does not account for plasmasphere TEC, the vertical delays are underestimated compared to vertical delays of GPS signals. Therefore, the model should be modified accordingly for precise TEC estimation.  相似文献   

14.
The vertical ionospheric TEC values obtained from GAGAN grid based ionospheric delay correction values over the sea in the Indian equatorial region have been compared with the corresponding values derived from the International Reference Ionosphere model, IRI-2016. The objective of this work is to study the deviation of the vertical TEC derived from the IRI model from ground truths over the sea for different conditions. This will serve the basic intention of assessing the candidature of the IRI model as an alternative ionospheric correction model in navigation receivers in terms of accuracy. We have chosen different solar activity periods, seasons, geomagnetic conditions, locations etc. for our comparison and analysis. The TEC values by the IRI-2016 were compared with the actual measured values for the given conditions and errors were obtained. The measured vertical TEC values at the ionospheric grid points were derived from the GAGAN broadcast ionospheric delay data and used as reference. The IRI model with standard internal functions was used in estimating the TEC at the same ionospheric grid points. The errors in the model derived values are statistically analysed. Broadly, the results show that, for the Indian sector over the sea, the IRI model performs better on quiet days in off equatorial regions, particularly in the northern region. The overall performance degrades for other conditions with the model generally underestimating the true TEC values and most severely in the equatorial region. The performance is worst in this region for the disturbed days of the equinoctial period. The comparison study is also done with the TEC data measured directly by dual frequency GPS receivers. The results were found to be in general agreement with those obtained by comparing the model with GAGAN broadcast data as reference. This study will be useful in considering the IRI-2016 model for real time estimates of TEC as an alternative to the current parametric model in a satellite navigation receiver in absence of other options.  相似文献   

15.
This paper mainly discusses the improvement of performance of the International Reference Ionosphere (IRI) model in estimating the variation of the Vertical Total Electron Content (VTEC) over the mid latitude American regions during the relatively low (2008–2010) and relatively high (2012) solar activity years. This has been conducted employing the VTEC values obtained from the dual frequency ground based Global Positioning System (GPS) receivers located at Mineral Area Community College, MACC (37.85°N, 269.52°W) and Mississippi County Airport, MAIR (36.85°N, 270.64°W), and the latest versions of the IRI online model (IRI 2007, IRI 2012 and IRI 2016). The study mainly focuses to compare the trend of variability of the monthly and seasonal modeled VTEC values (IRI 2007 VTEC, IRI 2012 VTEC and IRI 2016 VTEC) with the corresponding measured VTEC values (GPS VTEC). The overall results show that the IRI VTEC values (almost in all versions of the model) are generally smaller than the GPS VTEC except after about 15:00 UT (09:00 LT) in the December solstice when the Sun shifts to the high solar activity. On the contrary, overestimations of the VTEC values by the model are observed in traversing from the low solar activity (2008) to high solar activity (2012) phase, especially after about 15:00 UT (09::00 LT) with the IRI 2016 version showing the highest. In general, the IRI 2007 and IRI 2012 versions show similar monthly and seasonal underestimations or overestimations showing that the two versions have almost similar performance. The IRI 2016 version is generally better in capturing both the diurnal and arithmetic mean GPS VTEC values with some exceptional months and seasons as compared to those of the IRI 2007 and IRI 2012 versions.  相似文献   

16.
A comparison of the ionospheric F-region critical frequency (foF2) between ionosonde measurements and IRI-2016 predictions is studied over China during the period from January 2008 to October 2016. Four stations are selected, and the latitude coverage starts at 49.4°N and ends at 23.2°N with a sequential latitude interval of about 10°, the corresponding geomagnetic latitudes are from 39.5°N to 13.2°N. The results show that the variability of the observed foF2 versus latitudes, seasons, local time and levels of solar activity could be well reproduced by IRI-2016. However, the daily lowest value of foF2 from the IRI-2016 prediction occurs earlier than that from the ionosonde. Around the sunrise, the IRI-2016 prediction shows a very sharp rise and grows much faster than the observed foF2 in every month. The foF2 difference between the two options (URSI and CCIR) in IRI-2016 increases as the F10.7 index decreases. During 2008–2009, the annual average deviations of URSI and CCIR range from ?5% to ?10% and from 5% to ?5%, respectively. Generally, the CCIR performs better than URSI during postsunset under low solar activity or in Equatorial Ionization Anomaly (EIA) region over China, while it shows no large difference in performance with URSI in other locations or for other time.  相似文献   

17.
The International Reference Ionosphere (IRI) empirical model provides valuable data for many fields including space and navigation applications. Since the IRI model gives the ionospheric parameters in the altitude range from 50?km to 2000?km, researchers focused on the IRI-PLAS model which is the plasmasphere extension of the IRI model. In this study, Total Electron Content (TEC) prediction performance of the IRI-PLAS model was examined at a global scale using the location of globally distributed 9 IGS stations. Besides the long term (01.01.2015–31.12.2015) behavior of the model, TEC predictions during the equinox and solstice days of 2014–2017 were also tested. IRI-PLAS-TEC values were examined in comparison with GPS-TEC data. Hourly interval of yearly profile exhibits that when the geomagnetic and solar active days are ignored, differences between IRI-PLAS-TEC and GPS-TEC are rather small (~2–3 TECU) at stations in the northern hemisphere, generally ~4–5 TECU level at the southern hemisphere stations and reaching above 10 TECU for few hours. While the IRI-PLAS-TEC generally overestimates the GPS-TEC at southern hemisphere stations during quiet days, the model-derived TEC underestimates GPS-TEC during solar active days. IRI-PLAS-TEC and GPS-TEC values exhibit similar trend for the equinoxes 21 March and 23 September which refer equivalent conditions.  相似文献   

18.
This work presents an analysis of the Total Electron Content (TEC) derived from the International GNSS Service (IGS) receivers at Malindi (mal2: 2.9oS, 40.1oE, dip −26.813o), Kasarani (rcmn: 36.89oE, 1.2oS, dip −23.970o), Eldoret (moiu: 35.3oE, 0.3oN, dip −21.037o) and GPS-SCINDA (36.8oE, 1.3oS, dip −24.117o) receiver located in Nairobi for the period 2009–2011. The diurnal, monthly and seasonal variations of the GPS derived TEC (GPS-TEC) and effects of space weather on TEC are compared with TEC from the 2007 International Reference Ionosphere model (IRI-TEC) using the NeQuick option for the topside electron density. The diurnal peaks in GPS-TEC is maximum during equinoctial months (March, April, October) and in December and minimum in June solstice months (May, June, July). The variability in GPS-TEC is minimal in all seasons between 0:00 and 04:00 UT and maximum near noon between 10:00 and 14:00 UT. Significant variability in TEC at post sunset hours after 16:00 UT (19:00 LT) has been noted in all the seasons except in June solstice. The TEC variability of the post sunset hours is associated with the occurrence of the ionization anomaly crest which enhances nighttime TEC over this region. A comparison between the GPS-TEC and IRI-TEC indicates that both the model and observation depicts a similar trend in the monthly and seasonal variations. However seasonal averages show that IRI-TEC values are higher than the GPS-TEC. The IRI-TEC also depicts a double peak in diurnal values unlike the GPS-TEC. This overestimation which is primarily during daytime hours could be due to the model overestimation of the equatorial anomaly effect on levels of ionospheric ionization over the low latitude regions. The IRI-TEC also does not show any response to geomagnetic activity, despite the STORM option being selected in the model; the IRI model generally remains smooth and underestimates TEC during a storm. The GPS-TEC variability indicated by standard deviation seasonal averages has been presented as a basis for extending the IRI-model to accommodate TEC-variability.  相似文献   

19.
In recent years, new techniques and algorithms such as Artificial Neural Networks (ANNs), Fuzzy Inference Systems (FIS) and Genetic Algorithm (GA) have been used as alternative statistical tools in modeling and forecasting issues. These methods have been extensively used in the field of geosciences and atmospheric physics. The main purpose of this paper is to combine FIS and ANNs for local modeling of the ionosphere Total Electron Content (TEC) in Iran. An Adaptive Neuro-Fuzzy Inference System (ANFIS) is developed for TEC modeling. Also, Multi-Layer Perceptron ANN (MLP-ANN) and ANN based on Radial Base Functions (RBF) have been designed for analyzing ANFIS results. Observations of 29 Global Positioning System (GPS) stations from the Iranian Permanent GPS Network (IPGN) have been used in 3 different seasons in 2015 and 2016. These stations are located at geomagnetic low latitudes region. Out of these 29 stations, 24 stations for training and 5 stations for testing and validating were selected. The relative and absolute errors have been used to evaluate the accuracy of the proposed model. Also, the results of this paper are compared with the International Reference Ionosphere model (IRI2016). The maximum values of the average relative error for RBF, MLP-ANN, ANFIS and IRI2016 methods are 13.88%, 11.79%, 10.06%, and 18.34%, respectively. Also, the maximum values of the average absolute error for these methods are 2.38, 2.21, 1.5 and 3.36 TECU, respectively. Comparison of diurnal predicted TEC from the ANFIS, RBF, MLP-ANN and IRI2016 models with GPS-TEC revealed that the ANFIS provides more accurate predictions than the other methods in the test area.  相似文献   

20.
Bottomside electron density (Ne-h) profiles during midday (10–14 h) are analyzed using modern digital ionosonde observations at a low-middle latitude station, New Delhi (28.6N, 77.2E, dip 42.4N), for the period from January 2003 to December 2003, pertaining to moderate solar activity (MSA). Each individual profile is normalized with respect to the peak height and density (hmF2, NmF2) of the F2-region. These profiles are compared with those obtained from the International Reference Ionosphere (IRI-2001) model. Bilitza [Bilitza, D. International Reference Ionosphere 2000. Radio Sci. 36 (2), 261–275, 2001] using both the options namely: Gulyaeva’s model [Gulyaeva, T.L. Progress in ionospheric informatics based on electron density profile analysis of ionograms. Adv. Space Res. 7 (6) 39–48, 1987] and B0 Tab. option [Bilitza, D., Radicella, S.M., Reinisch, B.W., Adeniyi, J.O., Mosert Gonzalez, M.E., Zhang, S.R., Obrou, O. New B0 and B1 models for IRI. Adv. Space Res. 25 (1), 89–95, 2000]. The study reveals that during summer and equinox, the IRI model with B0 Tab. option in general, produces better agreement with the observed median profiles, while the IRI predictions using Gulyaeva’s option, overestimate the electron density distribution at all the heights below the F2-peak. However, during winter, in general, the IRI model, using both the options, reveals shows fairly good agreement with the observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号