首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper discusses the monthly and seasonal variation of the total electron content (TEC) and the improvement of performance of the IRI model in estimating TEC over Ethiopia during the solar maximum (2013–2016) phase employing as reference the GPS derived TEC data inferred from four GPS receivers installed in different regions of Ethiopia; Assosa (geog 10.05°N, 34.55°E, Geom. 7.01°N), Ambo (8.97°N, 37.86°E, Geom. 5.42°N), Nazret (8.57°N, 39.29°E, Geom. 4.81°N) and Arba Minch (6.06°N, 37.56°E, Geom. 2.62°N). The results reveal that, in the years 2013–2016, the highest peak GPS-derived diurnal VTEC is observed in the March equinox in 2015 over Arba Minch station. Moreover, both the arithmetic mean GPS-derived and modelled VTEC values, generally, show maximum and minimum values in the equinoctial and June solstice months, respectively in 2014–2015. However, in 2013, the minimum and maximum arithmetic mean GPS-derived values are observed in the March equinox and December solstice, respectively. The results also show that, even though overestimation of the modelled VTEC has been observed on most of the hours, all versions of the model are generally good to estimate both the monthly and seasonal diurnal hourly VTEC values, especially in the early morning hours (00:00–03:00?UT or 03:00–06:00?LT). However, it has also been shown that the IRI 2007 and IRI 2012 versions generally perform best in matching the diurnal GPS derived TEC values as compared to that of the IRI 2016 version. In addition, the IRI 2012 version with IRI2001 option for the topside electron density shows the highest overestimation of the VTEC as compared to the other options. None of the versions of the IRI model are proved to be able to capture the effects of geomagnetic storms.  相似文献   

2.
This paper investigated the performance of the latest International Reference Ionosphere model (IRI-2016) over that of IRI-2012 in predicting total electron content (TEC) at three different stations in the Indian region. The data used were Global Positioning System (GPS) data collected during the ascending phase of solar cycle 24 over three low-latitude stations in India namely; Bangalore (13.02°N Geographic latitude, 77.57°E Geographic longitude), Hyderabad (17.25°N Geographic latitude, 78.30°E Geographic longitude) and Surat (21.16°N Geographic latitude, 72.78°E Geographic longitude). Monthly, the seasonal and annual variability of GPS-TEC have been compared with those derived from International Reference Ionosphere IRI-2016 and IRI-2012 with two different options of topside electron density: NeQuick and IRI01-corr. It is observed that both versions of IRI (i.e., IRI-2012 and IRI-2016) predict the GPS-TEC with some deviations, the latest version of IRI (IRI-2016) predicted the TEC similar to those predicted by IRI-2012 for all the seasons at all stations except for morning hours (0500 LT to 1000?LT). This shows that the effect of the updated version is seen only during morning hours and also that there is no change in TEC values by IRI-2016 from those predicted by IRI-2012 for the rest of the time of the day in the Indian low latitude region. The semiannual variations in the daytime maximum values of TEC are clearly observed from both GPS and model-derived TEC values with two peaks around March-April and September-October months of each year. Further, the Correlation of TEC derived by IRI-2016 and IRI-2012 with EUV and F10.7 shows similar results. This shows that the solar input to the IRI-2016 is similar to IRI 2012. There is no significant difference observed in TEC, bottom-side thickness (B0) and shape (B1) parameter predictions by both the versions of the IRI model. However, a clear improvement is visible in hmF2 and NmF2 predictions by IRI-2016 to that by IRI-2012. The SHU-2015 option of the IRI-2016 gives a better prediction of NmF2 for all the months at low latitude station Ahmedabad compare to AMTB 2013.  相似文献   

3.
Diurnal, seasonal and latitudinal variations of Vertical Total Electron Content (VTEC) over the equatorial region of the African continent and a comparison with IRI-2007 derived TEC (IRI-TEC), using all three options (namely; NeQuick, IRI01-corr and IRI-2001), are presented in this paper. The variability and comparison are presented for 2009, a year of low solar activity, using data from thirteen Global Positioning System (GPS) receivers. VTEC values were grouped into four seasons namely March Equinox (February, March, April), June Solstice (May, June, July), September Equinox (August, September, October), and December Solstice (November, December, January). VTEC generally increases from 06h00 LT and reaches its maximum value at approximately 15h00–17h00 LT during all seasons and at all locations. The NeQuick and IRI01-corr options of the IRI model predict reasonably well the observed diurnal and seasonal variation patterns of VTEC values. However, the IRI-2001 option gave a relatively poor prediction when compared with the other options. The post-midnight and post-sunset deviations between modeled and observed VTEC could arise because NmF2 or the shape of the electron density profile, or both, are not well predicted by the model; hence some improvements are still required in order to obtain improved predictions of TEC over the equatorial region of the Africa sector.  相似文献   

4.
This paper investigates the capacity of the latest version of the International Reference Ionosphere (IRI-2012) model in predicting the vertical Total Electron Content (vTEC) over Ethiopian regions during solar minimum (2009) and solar maximum (2013) phases. This has been carried out by comparing the IRI-2012 modeled and experimental vTEC inferred from eight ground based dual frequency GPS (Global Positioning System) receivers installed recently at different regions of the country. In this work, the diurnal, monthly and seasonal variation in the measured vTEC have been analyzed and compared with the IRI-2012 modeled vTEC. During the solar minimum phase, the lowest and highest diurnal peak of the experimental vTEC are observed in July and October, respectively. In general, the diurnal variability of vTEC has shown minimum values around 0300 UT (0600 LT) and maximum values between around 1000 and 1300 UT (1300 and 1600 LT) during both solar activity phases. Moreover, the maximum and minimum monthly and seasonal mean hourly vTEC values are observed in October and July and in the March equinox and June solstice, respectively. It is also shown that the IRI-2012-model better predicts the diurnal vTEC in the time interval of about 0000–0300 UT (0300–0600 LT) during the solar minimum phase. However, the model generally overestimates the diurnal vTEC except in the time interval of about 0900–1500 UT (1200–1800 LT) during the solar maximum phase. The overall result of this work shows that the diurnal vTEC prediction performance of the model is generally better during the solar minimum phase than during solar maximum phase. Regarding the monthly and seasonal prediction capacity of the model, there is a good agreement between the modeled and measured monthly and seasonal mean hourly vTEC values in January and December solstice, respectively. Another result of the work depicts that unlike the GPS–TEC the IRI-2012 TEC does not respond to the effect resulted from geomagnetic storms.  相似文献   

5.
This paper examines the performances of NeQuick2, the latest available IRI-2016, IRI-2012 and IRI-2007 models in describing the monthly and seasonal mean total electron content (TEC) over the East African region. This is to gain insight into the success of the various model types and versions at characterizing the ionosphere within the equatorial ionization anomaly. TEC derived from five Global Positioning System (GPS) receivers installed at Addis Ababa (ADD, 5.33°N, 111.99°E Geog.), Asab (ASAB, 8.67°N, 116.44°E Geog.), Ambo (ABOO, 5.43°N, 111.05°E Geog.), Nairobi (RCMN, ?4.48°N, 108.46°E Geog.) and Nazret (NAZR, 4.78°N, 112.43°E Geog.), are compared with the corresponding values computed using those models during varying solar activity period (1998 and 2008–2015). We found that different models describe the equatorial and anomaly region ionosphere best depending on solar cycle, season and geomagnetic activity levels. Our results show that IRI-2016 is the best model (compared to others in terms of discrepancy range) in estimating the monthly mean GPS-TEC at NAZR, ADD and RCMN stations except at ADD during 2008 and 2012. It is also found that IRI-2012 is the best model in estimating the monthly mean TEC at ABOO station in 2014. IRI show better agreement with observations during June solstice for all the years studied at ADD except in 2012 where NeQuick2 better performs. At NAZR, NeQuick2 better performs in estimating seasonal mean GPS-TEC during 2011, while IRI models are best during 2008–2009. Both NeQuick2 and IRI models underestimate measured TEC for all the seasons at ADD in 2010 but overestimate at NAZR in 2009 and RCMN in 2008. The periodic variations of experimental and modeled TEC have been compared with solar and geomagnetic indices at ABOO and ASAB in 2014 and results indicate that the F10.7 and sunspot number as indices of solar activity seriously affects the TEC variations with periods of 16–32?days followed by the geomagnetic activity on shorter timescales (roughly periods of less than 16?days). In this case, NeQuick2 derived TEC shows better agreement with a long term period variations of GPS-TEC, while IRI-2016 and IRI-2007 show better agreement with observations during short term periodic variations. This indicates that the dependence of NeQuick2 derived TEC on F10.7 is seasonal. Hence, we suggest that representation of geomagnetic activity indices is required for better performance over the low latitude region.  相似文献   

6.
Using vertical total electron content (VTEC) measurements obtained from GPS satellite signals the capability of the NeQuick 2 and IRI Plas models to predict VTEC over the low latitude and South American sector is analyzed. In the present work both models were used to calculate VTEC up to the height of GPS satellites. Also, comparisons between the performance of IRI Plas and IRI 2007 have been done. The data correspond to June solstice and September equinox 1999 (high solar activity) and they were obtained at nine stations. The considered latitude range extends from 18.4°N to ?64.7°N and the longitude ranges from 281.3°E to 295.9°E in the South American sector. The greatest discrepancies among model predictions and the measured VTEC are obtained at low latitudes stations placed in the equatorial anomaly region. Underestimations as strong as 40?TECU [1?TECU?=?1016?m?2] can be observed at BOGT station for September equinox, when NeQuick2 model is used. The obtained results also show that: (a) for June solstice, in general the performance of IRI Plas for low latitude stations is better than that of NeQuick2 and, vice versa, for highest latitudes the performance of NeQuick2 is better than that of IRI Plas. For the stations TUCU and SANT both models have good performance; (b) for September equinox the performances of the models do not follow a clearly defined pattern as in the other season. However, it can be seen that for the region placed between the Northern peak and the valley of the equatorial anomaly, in general, the performance of IRI Plas is better than that of NeQuick2 for hours of maximum ionization. From TUCU to the South, the best TEC predictions are given by NeQuick2.The source of the observed deviations of the models has been explored in terms of CCIR foF2 determination in the available ionosonde stations in the region. Discrepancies can be also related to an unrealistic shape of the vertical electron density profile and or an erroneous prediction of the plasmaspheric contribution to the vertical total electron content. Moreover, the results of this study could be suggesting that in the case of NeQuick, the underestimation trend could be due to the lack of a proper plasmaspheric model in its topside representation. In contrast, the plasmaspheric model included in IRI, leads to clear overestimations of GPS derived TEC.  相似文献   

7.
The present paper deals with observations of wave activity in the period range 1–60 min at ionospheric heights over the Western Cape, South Africa from May 2010 to July 2010. The study is based on the Doppler type sounding of the ionosphere. The Doppler frequency shift measurements are supplemented with measurements of collocated Digisonde DPS-4D at SANSA Space Sciences, Hermanus. Nine geomagnetically quiet days and nine geomagnetically active days were included in the study. Waves of periods 4–30 min were observed during the daytime independent of the level of geomagnetic activity. Amplitudes of 10–30 min waves always increased between 14:00 and 16:15 UT (16:00–18:15 LT). Secondary maxima were observed between 06:00 and 07:00 UT (08:00–09:00 LT). The maximum wave amplitudes occurred close to the time of passage of the solar terminator in the studied region which is known to act as a source of gravity waves.  相似文献   

8.
The ionospheric total electron content (TEC) in both northern and southern Equatorial anomaly regions are examined by using the Global Positioning System (GPS) based TEC measurements around 73°E Longitude in the Asian sector. The TEC contour charts obtained at SURAT (21.16°N; 72.78°E; 12.9°N Geomagnetic Lat.) and DGAR (7.27°S; 72.37°E; 15.3°S Geomagnetic Lat.) over 73°E longitude during a very low solar activity phase (2009) and a moderate solar activity (2012) phase are used in this study. The results show the existence of hemispheric asymmetry and the effects of solar activity on the EIA crest in occurrence time, location and strength. The results are also compared with the TEC derived by IRI-2016 Model and it is found that the North-South asymmetry at the EIA region is clearly depicted by IRI-2016 with some discrepancies (up to 20% in the northern hemisphere at SURAT and up to 40% in the southern hemisphere at DGAR station for June Solstice and up to 10% both for SURAT and DGAR for December Solstice). This discrepancy in the IRI-2016 model is found larger during the year 2012 than that during the solar minimum year 2009 at both the hemispheres. Further, an asymmetry index, (Ai) is determined to illustrate the North-South asymmetry observed in TEC at EIA crest. The seasonal, annual and solar flux dependence of this index are investigated during both solstices and compared with the TEC derived by IRI.  相似文献   

9.
太阳活动低年低纬地区VTEC 变化特性分析   总被引:2,自引:0,他引:2  
利用福州台站(26.1°N, 119.3°E, 磁纬14.4°N)电离层闪烁与TEC监测仪2006-2010年的观测数据, 对该地区垂直总电子含量(VTEC)进行时间变化特性分析. 结果表明, 春秋冬三季的VTEC平均最高值出现在06:00UT, 夏季出现在08:00UT, 所有季节的平均最低值均出现在21:00UT; VTEC变化存在季节异常和弱冬季异常, 春秋季节高, 冬夏季节低, 夏季VTEC比冬季低且最大值出现时间延迟; VTEC在2006-2009年呈现下降的变化趋势, 2010年开始增强, 年际变化与太阳活动及地磁活动变化趋势具有较好的对应关系; VTEC变化与太阳活动存在很好的相关性, 相关系数达到0.5以上, 地磁活动则显示了弱相关的特性; F10.7与VTEC的相关性随着每天Kp指数总值Σkp的增大而减小.   相似文献   

10.
This paper reports the diurnal, seasonal, and long term variability of the E layer critical frequency (foE) and peak height (hmE) derived from Digisonde measurements from 2009 to 2016 at the low-middle latitude European station of Nicosia, Cyprus (geographical coordinates: 35°N, 33°E, geomagnetic lat. 29.38°N, I = 51.7°). Manually scaled monthly median values of foE and hmE are compared with IRI-2012 predictions with a view to assess the predictability of IRI. Results show that in general, IRI slightly overestimates foE values both at low and high solar activity. At low solar activity, overestimations are mostly limited to 0.25?MHz (equivalent electron density, 0.775?×?103?el/m?3) but can go as high as 0.5?MHz (equivalent electron density, 3.1?×?103?el/m?3, during noon) around equinox. In some months, underestimations, though sporadic in nature, up to 0.25?MHz are noted (mostly during sunrise and sunset). At high solar activity, a similar pattern of over-/underestimation is evident. During the entire period of study, over-/under estimations are mostly limited to 0.25?MHz. In very few cases, these exceed 0.25?MHz but are limited to 0.5?MHz. Analysis of hmE reveals that: (1) hmE remains almost constant during ±2 to ±4?h around local noon, (2) hmE values are higher in winter than in spring, summer and autumn, (3) there are two maxima near sunrise and sunset with a noontime minimum in between. During the entire period of study, significant differences between observed hmE and the IRI predictions have been noted. IRI fails to predict hmE and outputs a constant value of 110?km, which is higher than most of the observed values. Over- and under estimations range from 3 to 13?km and from 0 to 3?km respectively.  相似文献   

11.
We present the results derived from measuring fundamental parameters of the ionospheric response to the August 11, 1999 total solar eclipse. Our study is based on using the data from about 70 GPS stations located in the neighbourhood of the eclipse totality phase in Europe. The key feature of our data is a higher reliability of determining the main parameters of the response to eclipse which is due to high space-time resolution and to the increased sensitivity of detection of ionospheric disturbances inherent in the GPS-array method which we are using. Our analysis revealed a well-defined effect of a decrease (depression) of the total electron content (TEC) for all GPS stations. The depth and duration of the TEC depression were found to be 0.2–0.3 TECU and 60 min, respectively. The delay τ between minimum TEC values with respect to the totality phase near the eclipse path increased gradually from 4 min in Greenwich longitude (10:40 UT, LT) to 18 min at the longitude 16° (12:09 LT). The local time-dependence of τ that is revealed in this paper is in agreement with theoretical estimates reported in (Stubbe, 1970).  相似文献   

12.
Monthly median values of foF2, hmF2 and M(3000)F2 parameters, with quarter-hourly time interval resolution for the diurnal variation, obtained with DPS4 digisonde at Hainan (19.5°N, 109.1°E; Geomagnetic coordinates: 178.95°E, 8.1°N) are used to investigate the low-latitude ionospheric variations and comparisons with the International Reference Ionosphere (IRI) model predictions. The data used for the present study covers the period from February 2002 to April 2007, which is characterized by a wide range of solar activity, ranging from high solar activity (2002) to low solar activity (2007). The results show that (1) Generally, IRI predictions follow well the diurnal and seasonal variation patterns of the experimental values of foF2, especially in the summer of 2002. However, there are systematic deviation between experimental values and IRI predictions with either CCIR or URSI coefficients. Generally IRI model greatly underestimate the values of foF2 from about noon to sunrise of next day, especially in the afternoon, and slightly overestimate them from sunrise to about noon. It seems that there are bigger deviations between IRI Model predictions and the experimental observations for the moderate solar activity. (2) Generally the IRI-predicted hmF2 values using CCIR M(3000)F2 option shows a poor agreement with the experimental results, but there is a relatively good agreement in summer at low solar activity. The deviation between the IRI-predicted hmF2 using CCIR M(3000)F2 and observed hmF2 is bigger from noon to sunset and around sunrise especially at high solar activity. The occurrence time of hmF2 peak (about 1200 LT) of the IRI model predictions is earlier than that of observations (around 1500 LT). The agreement between the IRI hmF2 obtained with the measured M(3000)F2 and the observed hmF2 is very good except that IRI overestimates slightly hmF2 in the daytime in summer at high solar activity and underestimates it in the nighttime with lower values near sunrise at low solar activity.  相似文献   

13.
The quasi-biennial oscillation, QBO, a well known periodicity in the equatorial stratospheric zonal winds, is also found in ionospheric parameters and in solar and geomagnetic activity indices. Many authors speculated about the link between the QBO in solar and geomagnetic activity and the QBO in atmospheric parameters. In this work we analyze the presence of the QBO in the ionosphere using the Vertical Total Electron Content (VTEC) values obtained from Global Navigation Satellite System (GNSS) measurements during the period 1999–2012. In particular, we used IONEX files, i.e. the International GNSS Service (IGS) ionospheric products. IONEX provide VTEC values around the world at 2-h intervals. From these data we compute global and zonal averages of VTEC at different local times at mid and equatorial geomagnetic latitudes. VTEC and Extreme Ultra Violet (EUV) solar flux time series are analyzed using a wavelet multi resolution analysis. In all cases the QBO is detected among other expected periodicities.  相似文献   

14.
利用位于赤道异常区的深圳站(22.59°N,113.97°E)2011年1月至2012年12月及2015年1月至2015年12月监测到的GPS-TEC数据,统计分析华南地区电离层闪烁与TEC耗空同时出现、电离层闪烁单独出现和TEC耗空单独出现3种现象的时间和空间分布特性.结果表明:这3种现象均主要发生在春秋季节;闪烁与TEC耗空同时出现、闪烁单独出现和TEC耗空单独出现分别主要发生在纬度为19°-23°N,21°-24°N和24°-26°N的空间区域.探测到闪烁和TEC耗空同时出现、闪烁单独出现和TEC耗空单独出现的时间分别主要分布在20:00LT-22:00LT,21:00LT-23:00LT和22:30LT-23:30LT.闪烁与TEC耗空同时出现、闪烁单独出现和TEC耗空单独出现3种现象的时间和空间分布特性对应了华南地区不规则体和赤道等离子体泡(EPBs)从产生到消失的演变过程.   相似文献   

15.
This study characterizes total electron content (TEC) measured by Global Positioning System (GPS) over African equatorial ionization anomaly (EIA) region for 2009–2016 period during both quiet geomagnetic conditions (Kp?≤?1) and normal conditions (1?>?Kp?≤?4). GPS-TEC data from four equatorial/low-latitude stations, namely, Addis Ababa (ADIS: 9.04°N, 38.77°E, mag. lat: 0.2°N) [Ethiopia]; Yamoussoukro (YKRO: 6.87°N, 5.24°W, mag. lat: 2.6°S) [Ivory Coast]; Malindi (MAL2; 3.00°S, 40.19°E, mag. lat: 12.4°S) [Kenya] and Libreville (NKLG; 0.35°N, 9.67°W, mag. lat: 13.5°S) [Gabon] were used for this study. Interesting features like noontime TEC bite-out, winter anomaly during the ascending and maximum phases of solar cycle 24, diurnal and seasonal variations with solar activity have been observed and investigated in this study. The day-to-day variations exhibited ionospheric TEC asymmetry on an annual scale. TEC observed at equatorial stations (EIA-trough) and EIA-crest reach maximum values between ~1300–1600 LT and ~1300–1600 LT, respectively. About 76% of the high TEC values were recorded in equinoctial months while the June solstice predominantly exhibited low TEC values. Yearly, the estimated TEC values increases or decreases with solar activity, with 2014 having the highest TEC value. Solar activity dependence of TEC within the EIA zone reveals that both F10.7?cm index and EUV flux (24–36?nm) gives a stronger correlation with TEC than Sunspot Number (SSN). A slightly higher degree of dependence is on EUV flux with the mean highest correlation coefficient (R) value of 0.70, 0.83, 0.82 and 0.88 for quiet geomagnetic conditions (Kp?≤?1) at stations ADIS, MAL2, NKLG, and YKRO, respectively. The correlation results for the entire period consequently reveals that SSN and solar flux F10.7?cm index might not be an ideal index as a proxy for EUV flux as well as to measure the variability of TEC strength within the EIA zone. The estimated TEC along the EIA crest (MAL2 and NKLG) exhibited double-hump maximum, as well as post-sunset peaks (night time enhancement of TEC) between ~2100 and 2300 LT. EIA formation was prominent during evening/post-noon hours.  相似文献   

16.
The unusually deep and extended solar minimum of cycle 23/24 made it very difficult to predict the solar indices 1 or 2 years into the future. Most of the predictions were proven wrong by the actual observed indices. IRI gets its solar, magnetic, and ionospheric indices from an indices file that is updated twice a year. In recent years, due to the unusual solar minimum, predictions had to be corrected downward with every new indices update. In this paper we analyse how much the uncertainties in the predictability of solar activity indices affect the IRI outcome and how the IRI values calculated with predicted and observed indices compared to the actual measurements. Monthly median values of F2 layer critical frequency (foF2) derived from the ionosonde measurements at the mid-latitude ionospheric station Juliusruh were compared with the International Reference Ionosphere (IRI-2007) model predictions. The analysis found that IRI provides reliable results that compare well with actual measurements, when the definite (observed and adjusted) indices of solar activity are used, while IRI values based on earlier predictions of these indices noticeably overestimated the measurements during the solar minimum. One of the principal objectives of this paper is to direct attention of IRI users to update their solar activity indices files regularly. Use of an older index file can lead to serious IRI overestimations of F-region electron density during the recent extended solar minimum.  相似文献   

17.
GNSS TEC values have been obtained from 18 stations distributed from the magnetic equator to nearly 80°N magnetic dip in the African and west-European longitude sector corresponding to the March 17–18, 2015 geomagnetic storm. Significantly depleted ionosphere have been observed at stations north of 50°N geographic on March 18, 2015 following the above storm over a longitude swath 11.9°–21°E covering the Eastern Africa and Western European longitude sector. High ROTI values were noted on March 17th at locations around 80°N magnetic dip. Two prominent peaks in PCN were noted around 09:00 UT and 14:00 UT on March 17, 2015 and around 15:00 UT on March 18, 2015. Daytime thermospheric (O/N2) ratio was markedly less on March 18th at latitudes above 60°N geographic which is suggested to be the major driver behind depleted high latitude ionosphere during the recovery phase of the storm on March 18, 2015.  相似文献   

18.
Analysis of a long-time series of hourly median characteristics of the ionospheric plasma at two mid-latitude locations in the Northern and Southern hemisphere, Juliusruh (54.6N; 13.4E) and Hobart (42.9S; 147.3E), reveals patterns of their synchronous and independent variability. We studied timelines of GPS vTEC, ionogram-derived F2-layer peak electron density NmF2, ionospheric equivalent slab thickness τ, and their ratios at two locations during the complete 23rd solar cycle and its following period of the extremely low solar activity in 2008–2009. This study has also involved the comparative analysis of the observed data versus the model predictions by IRI-2012. During the high solar activity in 2000–2002, seasonal variations show a complicated cross-hemisphere behavior influenced by the winter and semi-annual anomalies, with the largest noon-time values of TEC and NmF2 observed around equinoxes. Strength of the winter anomaly in NmF2 was significantly greater at Juliusruh in comparison with Hobart. The winter anomaly in GPS vTEC values was much weaker than in NmF2 for the Northern hemisphere mid-latitudes and was entirely absent at the Southern hemisphere. Cross-hemisphere analysis of the equivalent slab thickness shows its clear seasonal dependence for all levels of solar activity: the day-time maximum τmax is observed during local summer, whereas the day-time minimum τmin is observed during local winter. The night-time values of τ were higher compared to the day-time values during the winter and equinox seasons. Comparative model-data study shows rather good IRI performance of the day-time NmF2 for mid-latitudes of both hemispheres and rather noticeable overestimations for the mid-night NmF2 values during high solar activity. Analysis of IRI vTEC demonstrates the model limitations, related with the absence of the plasmaspheric part, and actual demand in a reliable and standard ionosphere–plasmasphere model for analysis of GPS vTEC.  相似文献   

19.
This paper presents an novel extreme learning machine (ELM)-based prediction model for the ionospheric propagation factor M(3000)F2 at Darwin station (12.4°S, 131.5°E; −44.5°dip) in Australia. The proposed ELM model is trained with hourly daily values of M(3000)F2 from the period 1998–2014 except 2001 and 2009. The hourly daily values of 2001 (high solar activity) and 2009 (low solar activity) are used for validating the prediction accuracy. The proposed ELM for modeling M(3000)F2 can achieve faster training process and similar testing accuracy compared with backward propagation neural network (BPNN). In addition, the performance of the ELM is verified by comparing the predicted values of M(3000)F2 with observed values and the international reference ionosphere (IRI −2016) model predicted values. Based on the error differences (the root mean square error (RMSE) and the M(3000)F2 percentage improvement values M(3000)F2IMP(%)), the result demonstrates the effectiveness of the ELM model compared with the IRI-2016 model at hourly, daily, monthly, and yearly in high (2001) and low (2009) solar activity years. The ELM also shows good agreement with observations compared with the IRI during disturbed magnetic activity.  相似文献   

20.
The propagation of radio signals in the Earth’s atmosphere is dominantly affected by the ionosphere due to its dispersive nature. Global Positioning System (GPS) data provides relevant information that leads to the derivation of total electron content (TEC) which can be considered as the ionosphere’s measure of ionisation. This paper presents part of a feasibility study for the development of a Neural Network (NN) based model for the prediction of South African GPS derived TEC. The South African GPS receiver network is operated and maintained by the Chief Directorate Surveys and Mapping (CDSM) in Cape Town, South Africa. Vertical total electron content (VTEC) was calculated for four GPS receiver stations using the Adjusted Spherical Harmonic (ASHA) model. Factors that influence TEC were then identified and used to derive input parameters for the NN. The well established factors used are seasonal variation, diurnal variation, solar activity and magnetic activity. Comparison of diurnal predicted TEC values from both the NN model and the International Reference Ionosphere (IRI-2001) with GPS TEC revealed that the IRI provides more accurate predictions than the NN model during the spring equinoxes. However, on average the NN model predicts GPS TEC more accurately than the IRI model over the GPS locations considered within South Africa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号