首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
ISRO has developed the PSLV rocket (Polar Spacecraft Launch Vehicle) for polar orbiting satellites up to 1000 kg and is conducting a series of test missions. One of this is the IRS-P3, an remote sensing satellite with German participation. The payload consists of 3 scientific instruments: The wide field sensor WiFS for vegetation monitoring (ISRO), the imaging spectrometer MOS (DLR/Germany) for coastal zone and ocean studies an the X-ray astronomy payload (ISRO). The paper gives technical details and parameters on the launch vehicle, the satellite, the instruments and scientific goals and data utilization.  相似文献   

2.
3.
In order to meet the growing global requirement for affordable missions beyond Low Earth Orbit, two types of platform are under design at the Surrey Space Centre. The first platform is a derivative of Surrey's UoSAT-12 minisatellite, launched in April 1999 and operating successfully in-orbit. The minisatellite has been modified to accommodate a propulsion system capable of delivering up to 1700 m/s delta-V, enabling it to support a wide range of very low cost missions to LaGrange points, Near-Earth Objects, and the Moon. A mission to the Moon - dubbed “MoonShine” - is proposed as the first demonstration of the modified minisatellite beyond LEO. The second platform - Surrey's Interplanetary Platform - has been designed to support missions with delta-V requirements up to 3200 m/s, making it ideal for low cost missions to Mars and Venus, as well as Near Earth Objects (NEOs) and other interplanetary trajectories. Analysis has proved mission feasibility, identifying key challenges in both missions for developing cost-effective techniques for: spacecraft propulsion; navigation; autonomous operations; and a reliable safe mode strategy. To reduce mission risk, inherently failure resistant lunar and interplanetary trajectories are under study. In order to significantly reduce cost and increase reliability, both platforms can communicate with low-cost ground stations and exploit Surrey's experience in autonomous operations. The lunar minisatellite can provide up to 70 kg payload margin in lunar orbit for a total mission cost US$16–25 M. The interplanetary platform can deliver 20 kg of scientific payload to Mars or Venus orbit for a mission cost US$25–50 M. Together, the platforms will enable regular flight of payloads to the Moon and interplanetary space at unprecedented low cost. This paper outlines key systems engineering issues for the proposed Lunar Minisatellite and interplanetary Platform Missions, and describes the accommodation and performance offered to planetary payloads.  相似文献   

4.
Technology advances in sensor, digital technology and a standardised modular satellite bus are enabling a new generation of 80 kg micro-satellites with a better than 6.5 m GSD multi-spectral performance, to be specified, built and deployed with a dedicated launch within 12 months. The result of the standardised modular bus is lower cost, higher reliability and fast deployment. Operational remote sensing with a micro-satellite is thus within reach of individual organisations for dedicated missions. Sumbandilasat (pioneer in the Venda language) is a second generation satellite technology building on the expertise obtained in the Sunsat small satellite programme. The components used to build Sumbandilasat are the result of a technology development program of more than 3 years. Sumbandilasat is an operational technology demonstrator with more than 90% newly developed or improved subsystems and a compact refractive imager as a precursor to the MSMISat satellite with the same multi-spectral band set. The scalable, standardised modular satellite bus architecture enables satellites with a mass of 80–450 kg to be adapted to the specific mission requirements with minimum new engineering effort.  相似文献   

5.
Japan Aerospace Exploration Agency has a plan to develop the small satellite standard bus for various scientific missions and disaster monitoring missions. The satellite bus is a class of 250–400 kg mass with three-axis control capability of 0.02 accuracy. The science missions include X-ray astronomy missions, planetary telescope missions, and magnetosphere atmosphere missions. In order to adapt the wide range of mission requirements, the satellite bus has to be provided with flexibility. The concepts of modularization, reusability, and product line are applied to the standard bus system. This paper describes the characteristics of the small satellite standard bus which will be firstly launched in 2011.  相似文献   

6.
Surrey Satellite Technology Ltd (SSTL) at the University of Surrey (UK) has pioneered cost-effective satellite engineering techniques for smaller, faster, cheaper satellites to provide affordable access to space. SSTL has designed, built, launched and operated a series of twelve 50kg microsatellites in low Earth orbit which carry a wide range of satellite communications, space science, remote sensing and in-orbit technology demonstration payloads — for both civil and military applications. Each of these has been built and launched for around US$3M. This paper reviews SSTL's remote sensing capabilities and presents image results from the microsatellite cameras in low Earth in orbit. The latest microsatellites (TMSAT & FASat-Bravo) under construction at SSTL and due for launch in mid-1997 will provide 3-band multispectral imaging with 80-metre resolution; autonomous on-board image analysis, processing and compression prior to transmission direct to ground-based users employing small portable terminals.  相似文献   

7.
Flying Laptop is the first small satellite developed by the Institute of Space Systems at the Universität Stuttgart. It is a test bed for an on-board computer with a reconfigurable, redundant and self-controlling high computational ability based on the field programmable gate arrays (FPGAs). This Technical Note presents the operational concept and the on-board payload data processing of the satellite. The designed operational concept of Flying Laptop enables the achievement of mission goals such as technical demonstration, scientific Earth observation, and the payload data processing methods. All these capabilities expand its scientific usage and enable new possibilities for real-time applications. Its hierarchical architecture of the operational modes of subsystems and modules are developed in a state-machine diagram and tested by means of MathWorks Simulink-/Stateflow Toolbox. Furthermore, the concept of the on-board payload data processing and its implementation and possible applications are described.  相似文献   

8.
《Acta Astronautica》2010,66(11-12):1616-1627
Flying Laptop is the first small satellite developed by the Institute of Space Systems at the Universität Stuttgart. It is a test bed for an on-board computer with a reconfigurable, redundant and self-controlling high computational ability based on the field programmable gate arrays (FPGAs). This Technical Note presents the operational concept and the on-board payload data processing of the satellite. The designed operational concept of Flying Laptop enables the achievement of mission goals such as technical demonstration, scientific Earth observation, and the payload data processing methods. All these capabilities expand its scientific usage and enable new possibilities for real-time applications. Its hierarchical architecture of the operational modes of subsystems and modules are developed in a state-machine diagram and tested by means of MathWorks Simulink-/Stateflow Toolbox. Furthermore, the concept of the on-board payload data processing and its implementation and possible applications are described.  相似文献   

9.
A new and innovative type of gridded ion thruster, the “Dual-Stage 4-Grid” or DS4G concept, has been proposed and its predicted high performance validated under an ESA research, development and test programme. The DS4G concept is able to operate at very high specific impulse and thrust density values well in excess of conventional 3-grid ion thrusters at the expense of a higher power-to-thrust ratio. This makes it a possible candidate for ambitious missions requiring very high delta-V capability and high power. Such missions include 100 kW-level multi-ton probes based on nuclear and solar electric propulsion (SEP) to distant Kuiper Belt Object and inner Oort cloud objects, and to the Local Interstellar medium. In this paper, the DS4G concept is introduced and its application to this mission class is investigated. Benefits of using the DS4G over conventional thrusters include reduced transfer time and increased payload mass, if suitably advanced lightweight power system technologies are developed.A mission-level optimisation is performed (launch, spacecraft system design and low-thrust trajectory combined) in order to find design solutions with minimum transfer time, maximum scientific payload mass, and to explore the influence of power system specific mass. It is found that the DS4G enables an 8-ton spacecraft with a payload mass of 400 kg, equipped with a 65 kW nuclear reactor with specific mass 25 kg/kW (e.g. Topaz-type with Brayton cycle conversion) to reach 200 AU in 23 years after an Earth escape launch by Ariane 5. In this scenario, the optimum specific impulse for the mission is over 10,000 s, which is well within the capabilities of a single 65 kW DS4G thruster. It is also found that an interstellar probe mission to 200 AU could be accomplished in 25 years using a “medium-term” SEP system with a lightweight 155 kW solar array (2 kg/kW specific mass) and thruster PPU (3.7 kg/kW) and an Earth escape launch on Ariane 5. In this case, the optimum specific impulse is lower at 3500 s which is well within conventional gridded ion thruster capability.  相似文献   

10.
Within the European space platform program the EURECA is being established as a ground-based platform for short microgravity missions. The development towards a serviceable platform for longer, scientific missions is described. The plan of an advanced space-based platform for increasing payload demands is outlined. The platform design and the adaptation to scientific missions and servicing operations are investigated. The cost-effective utilization of the different platform types using new operational concepts is analyzed in parametric life cycle cost calculations for different payloads and mission scenarios.  相似文献   

11.
Significant progress has been achieved in India in demonstrating the utility of remote sensing data for various oceanographic applications during the last one decade. Among these, techniques have been developed for retrieval of ocean surface waves, winds, wave forecast model, internal waves, sea surface temperature and chlorophyll pigments. Encouraged from these results as well as for meeting the specific and increasing data requirements on an assured basis by oceanographers, India is making concerted efforts for developing and launching state-of-the-art indigenous satellites for ocean applications in the coming years.

The first in the series of ocean satellites planned for launch is Oceansat-1 (IRS-P4) by early 1999. Oceansat-1 carries on-board an Ocean Colour Monitor (OCM) and a Multi-frequency Scanning Microwave Radiometer (MSMR). OCM will have 8 narrow spectral bands operating in visible and near- infrared bands (402–885 nm) with a spatial resolution of 360 m and swath of 1420 km. The MSMR with its all weather capability is configured to have measurements at 4 frequencies viz., 6.6, 10.65, 18 & 21 GHz in dual polarisation mode with a spatial resolution of 120, 80, 40 & 40 km, respectively with an overall swath of 1360 km. The Oceansat-1 with repetitivity of once in two days will provide global data for retrieval of various oceanographic and meteorological parameters such as chlorophyll (primary productivity), sea surface temperature and wind speed, besides a host of other parameters of relevance to meteorology.

A full fledged satellite for ocean applications known as Oceansat-2 (IRS-P7) is also planned for launch during 2002. This satellite with payload mix of microwave (Scatterometer, Altimeter & Passive Microwave Radiometer), Thermal (TIR) and Optical (OCM) sensors, will provide greater in-sight into the global understanding of ocean dynamics/resources. This mission is expected to provide a complete set of oceanographic measurements, which are useful for providing operational oceanographic services.

Efforts are also on towards development of missions having multi-frequency, multipolarisation and multi-look angle microwave payloads including Synthetic Aperture Radar (SAR) and advanced millimeter wave sounders, besides development of imaging spectrometers by 2005.

A well-knit plan has been initiated in India for utilisation of planned Oceansat data. Important efforts initiated in this direction include SATellite Coastal and Oceanographic Research and Ocean Information Services, which are being carried out on an integrated basis aiming at providing services to the down stream users. The paper highlights these efforts in India towards providing an operational ocean information services in the coming years.  相似文献   


12.
The National Space Research Institute (INPE) is developing the first Brazilian Scientific Microsatellite (SACI-1) based on the vanguard technology and on the experience acquired through projects developed by Brazilian Space Program. The SACI-1 is a 750km polar orbit satellite. The spacecraft will combine spin stabilization with geomagnetic control and has a total mass of 60 kg. The overall dimensions are 640×470×470 mm. The SACI-1 satellite shall be launched together with CBERS (China-Brazil Earth Resource Satellite). Its platform is being designed for multiple mission applications. The Brazilian Academy of Sciences has selected four scientific payloads that characterize the mission. The scientific experiments are: ORCAS (Solar and Anomalous Cosmic Rays Observation in the Magnetosphere), PLASMEX (Study of Plasma Bubbles), FOTSAT (Airglow Photometer), and MAGNEX (Geomagnetic Experiment).  相似文献   

13.
Small satellite's role in future hyperspectral Earth observation missions   总被引:1,自引:0,他引:1  
M. Guelman  F. Ortenberg   《Acta Astronautica》2009,64(11-12):1252-1263
Along with various advanced satellite onboard sensors, an important place in the near future will belong to hyperspectral instruments, considered as suitable for different scientific, commercial and military missions. As was demonstrated over the last decade, hyperspectral Earth observations can be provided by small satellites at considerably lower costs and shorter timescales, even though with some limitations on resolution, spectral response, and data rate. In this work the requirements on small satellites with imaging hyperspectral sensors are studied. Physical and technological limitations of hyperspectral imagers are considered. A mathematical model of a small satellite with a hyperspectral imaging spectrometer system is developed. The ability of the small satellites of different subclasses (micro- and mini-) to obtain hyperspectral images with a given resolution and quality is examined. As a result of the feasibility analysis, the constraints on the main technical parameters of hyperspectral instruments suitable for application onboard the small satellites are outlined. Comparison of the data for designed and planned instruments with simulation results validates the presented approach to the estimation of the small satellite size limitations. Presented analysis was carried out for sensors with conventional filled aperture optics.  相似文献   

14.
环境与灾害监测目标具有多样性、定量化要求高等特点,非常适合光学载荷发挥其信息量丰富、种类多、精度高等方面的优势。在国际上,此类光学载荷发展迅速,新技术不断涌现,值得学习借鉴。文章重点阐述了应用于环境与灾害监测民用卫星的光学有效载荷的发展现状和发展趋势,为中国第二代"环境与灾害监测预报小卫星星座"的相关光学有效载荷发展提供参考。  相似文献   

15.
Yuri V. Trifonov 《Acta Astronautica》1996,39(9-12):1021-1024
The preliminary estimations show that the contemporary level of electronic and information engineering makes it possible to create a small s/c of 150–200 kg mass capable to solve both the problems of Earth remote sensing and many other applied and scientific problems orbiting the planets at 500–1000 km. In accordance with the fundamental criterion for choosing parameters of small multipurpose spacecraft the small UNISAT s/c has been created on the basis of a unified space platform. The design provides for s/c energetic, thermal and space-saving parameters satisfying the conditions for accommodation of various-purpose payload and a possibility of using relatively inexpensive and light launchers like “Start-1” mobile launch complexes. Space platform mass is 100–120 kg; permissible payloads (PL) mass is 40–80 kg; maximal average power consumption of the payload is up to 60 W; three-axes orientation accuracy up to 0.001 deg./s; s/c lifetime is not less than 3–5 years.  相似文献   

16.
Earth remote sensing (alongside communications) is one of the key application of Earth-orbiting satellites. Civilian satellites in the LANDSAT and SPOT series provide Earth images which have been used for a vast spectrum of applications in agriculture, meteorology, hydrology, urban planning and geology, to name but a few. In the defence sector, satellite remote sensing systems are a critical tool in strategic and tactical planning – for the countries which can afford them. To date, remote sensing satellites have fallen into one of these two categories: military missions driven by the requirement for very high resolution and orbital agility; and multipurpose civil satellites using general purpose sensors to serve a diverse community of end users. For military-style missions, the drive to high resolution sets the requirements for optics, attitude control and downlink data bandwidth. For civil missions, the requirement to satisfy multiple, diverse user applications forces compromises on spectral band and orbit selection. Although there are exceptions, many small satellite remote sensing missions carry on in this tradition, concentrating on ultra high resolution products for multiple user communities. This results in satellites costing on the order of US $100 M, not optimised for any particular application. This paper explores an alternative path to satellite remote sensing, aiming simultaneously to reduce cost and to optimise imaging products for specific applications. By decreasing the cost of the remote sensing satellite system to a critical point, it becomes appropriate to optimise the sensor's spectral and temporal characteristics to fit the requirements of a small, specialised user base. The critical engineering trade-off faced in a cost driven mission is how to reduce mission cost while still delivering a useful product to the selected user. At the Surrey Space Centre, we have pursued an engineering path using two dimensional CCD array sensors, commercial off-the-shelf lenses and gravity-gradient stabilised microsatellites. In spite of the inherent limitations of such systems, recent successes with the Thai Microsatellite Company's Thai-Phutt satellite show that a system costing in the region of US $3 million, can approach the spectral and spatial characteristics of LANDSAT. Surrey's UoSAT-12 minisatellite (to be launched April, 1999) will further develop this cost-driven approach to provide 10 m panchromatic resolution and 30 m multi-spectral resolution. This paper describes the Thai-Phutt and UoSAT-12 imaging systems, explaining the engineering methods and trade-offs. Although Surrey is presently the only centre presently pursuing such implementations, our paper shows that they deserve wider consideration.  相似文献   

17.
The concept of a European remote sensing satellite (ERDSAT) launched by ARIANE is characterized by a model payload, consisting of a synthetic aperture radar (SAR) and an optical multispectral scanner with 9 channels, for land applications or coastal zone missions. The mission goal of ERDSAT is based on European user requrements where a strong need for optical and microwave sensor operation on board the same satellite in a simultaneous or sequential mode is expressed. A data collection system is included. The proposed spacecraft is three-axes-stabilized and has a Sun-synchronous, near polar circular orbit with 750 km altitude. The selected configuration separates payload module and bus module. A thermostable carbon fibre grating structure is the central framework of the satellite. Each major subsystem is housed in a separate compartment and can be integrated and tested individually. First mass estimates resulted in 450 kg for the payload and 880 kg for the bus. The maximum power needed is 1750 W (for 6 min three times a day), which will be provided by a 1330 W solar array and two batteries. A “low cost” model philosophy is defined; the time schedule envisages a program start in late 1980 and a launch possibility end of 1985.  相似文献   

18.
通信卫星逐步由高轨地球同步轨道卫星向高、中、低轨结合的全球覆盖卫星方向发展,多业务和多重覆盖的发展趋势对通信卫星的灵活性提出了更高的要求。通信卫星配备灵活载荷已经成为重要发展方向,对面向个人用户的高通量通信卫星及高、中、低轨结合的组网通信卫星来说尤为重要。配备灵活载荷的通信卫星能实现端到端业务,能灵活调整覆盖区,实现灵活组网,并提升资源利用率。分析了国内外通信卫星灵活载荷的发展动态,介绍了通信卫星灵活载荷的技术特点,并给出了有效载荷方案,最后阐述了通信卫星灵活载荷发展的关键技术及发展思路。  相似文献   

19.
20.
The Space Shuttle Orbiter will be used as an orbital base for near-term space operations. Its payloads will range from compact satellites to large, flexible antennas. This paper addresses the problem of the dynamics and control of the Orbiter with a flexible payload. Two different cases are presented as examples. The first is a long, slender beam which might be used as an element in a large orbiting structure. The second is a compact satellite mounted on a spin table in the Orbiter payload bay. The closed loop limit cycles are determined for the first payload and the open loop eigenvalues are calculated for the second. Models of both payloads are mechanized in a simulation with the Shuttle on-orbit autopilot. The vehicle is put through a series of representative maneuvers and its behavior analyzed. The degree of interaction for each payload is determined and strategies are discussed for its reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号