首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Small changes in extended winter (November–March) 500 hPa vorticity area index (VAI) values for the 60–80°N latitude band are shown to be positively correlated with changes in a proxy for the high latitude ionosphere-to-surface current density JzJz.  相似文献   

2.
3.
We describe the current status and recent results from our Swift/VLT legacy survey, a VLT Large Programme aimed at characterizing the host galaxies of a homogeneously selected sub-sample of Swift   GRBs. The immediate goals are to determine the host luminosity function, study the effects of reddening, determine the fraction of LyαLyα emitters in the hosts, and obtain redshifts for targets without a reported one. The main effort so far has been the definition of a very carefully selected sample, obeying strict and well-defined criteria: 68 targets in total. Among the preliminary results is a large optical detection rate, the lack of extremely red objects (only one possible case in the sample) and an update of the Swift   GRB redshift distribution with 〈z〉∼2.0z2.0.  相似文献   

4.
We study the propagation of energetic particles, accelerated by interplanetary shock waves, upstream of the shock. By using the appropriate propagator, we show that in the case of superdiffusive transport, the time profile of particles accelerated at a traveling planar shock is a power-law with slope 0<γ<10<γ<1, at variance with the exponential profile obtained for normal diffusion. By analyzing data sets of interplanetary shocks in the solar wind observed by the Ulysses and the Voyager 2 spacecraft, we find that the time profiles of energetic electrons correspond to power-laws, with slopes γ?0.30–0.98γ?0.300.98, implying a mean square displacement 〈Δx2〉∝tαΔx2tα, with α=2-γ>1α=2-γ>1, i.e., superdiffusion. In addition, the propagation of ions is also superdiffusive, with α=1.07–1.13α=1.071.13.  相似文献   

5.
6.
7.
8.
9.
Deep space laser ranging missions like ASTROD I (Single-Spacecraft Astrodynamical Space Test of Relativity using Optical Devices) and ASTROD, together with astrometry missions like GAIA and LATOR will be able to test relativistic gravity to an unprecedented level of accuracy. More precisely, these missions will enable us to test relativistic gravity to 10-7–10-910-710-9 of the size of relativistic (post-Newtonian) effects, and will require second post-Newtonian approximation of relevant theories of gravity. The first post-Newtonian approximation is valid to 10-610-6 and the second post-Newtonian approximation is valid to 10-1210-12 in terms of post-Newtonian effects in the solar system. The scalar-tensor theory is widely discussed and used in tests of relativistic gravity, especially after the interests in inflation models and in dark energy models. In the Lagrangian, intermediate-range gravity term has a similar form as cosmological term. Here we present the full second post-Newtonian approximation of the scalar-tensor theory including viable examples of intermediate-range gravity. We use Chandrasekhar’s approach to derive the metric coefficients and the equation of the hydrodynamics governing a perfect fluid in the second post-Newtonian approximation in scalar-tensor theory; all terms inclusive of O(c-4)O(c-4) are retained consistently in the equations of motion.  相似文献   

10.
Nonlinear propagation of fast and slow magnetosonic perturbation modes in an ultra-cold, degenerate (extremely dense) electron–positron (EP) plasma (containing non-relativistic, ultra-cold, degenerate electron and positron fluids) has been investigated by the reductive perturbation method. It is shown that due to the property of being equal mass of the plasma species (me=mpme=mp, where meme and mpmp are electron and positron mass, respectively), the degenerate EP plasma system supports the K-dV solitons which are associated with either fast or slow magnetosonic perturbation modes. It is also found that the basic features of the electromagnetic solitary structures, which are found to exist in such a degenerate EP plasma, are significantly modified by the effects of degenerate electron and positron pressures. The applications of the results in an EP plasma medium, which occurs in compact astrophysical objects, particularly in white dwarfs, have been briefly discussed.  相似文献   

11.
An ion chemistry model is used to investigate the negative chlorine ion chemistry of the mesosphere for quiet ionospheric conditions. Model results are presented for high latitudes in February as well as for the equator in Summer. For nighttime, Cl-Cl-, Cl-Cl-(HCl), and NO3(HCl) are the most abundant chlorine anions in the mesosphere. The concentration of ClO3 depends significantly on its stability against collision-induced dissociation. In contrast to previous model predictions, the abundance of Cl-(H2O)Cl-(H2O) is small. For daytime, photoelectron detachment and photodissociation have pronounced impact on the negative chlorine ion chemistry in the mesosphere. The abundance of all anion cluster is considerably smaller than at night. While Cl-Cl- decreases in the upper mesosphere, its abundance increases at lower altitudes.  相似文献   

12.
Assume a constellation of satellites is flying near a given nominal trajectory around L4L4 or L5L5 in the Earth–Moon system in such a way that there is some freedom in the selection of the geometry of the constellation. We are interested in avoiding large variations of the mutual distances between spacecraft. In this case, the existence of regions of zero and minimum relative radial acceleration with respect to the nominal trajectory will prevent from the expansion or contraction of the constellation. In the other case, the existence of regions of maximum relative radial acceleration with respect to the nominal trajectory will produce a larger expansion and contraction of the constellation. The goal of this paper is to study these regions in the scenario of the Circular Restricted Three Body Problem by means of a linearization of the equations of motion relative to the periodic orbits around L4L4 or L5L5. This study corresponds to a preliminar planar formation flight dynamics about triangular libration points in the Earth–Moon system. Additionally, the cost estimate to maintain the constellation in the regions of zero and minimum relative radial acceleration or keeping a rigid configuration is computed with the use of the residual acceleration concept. At the end, the results are compared with the dynamical behavior of the deviation of the constellation from a periodic orbit.  相似文献   

13.
14.
We present medium resolution near-infrared host galaxy spectra of low redshift quasars, PG 0844+3490844+349 (z = 0.064), PG 1226+0231226+023 (z = 0.158), and PG 1426+0151426+015 (z = 0.086). The observations were done by using the Infrared Camera and Spectrograph (IRCS) at the Subaru 8.2 m telescope. The full width at half maximum of the point spread function was about 0.3 arcsec by operations of an adaptive optics system, which can effectively resolve the quasar spectra from the host galaxy spectra. We spent up to several hours per target and developed data reduction methods to reduce the systematic noises of the telluric emissions and absorptions. From the obtained spectra, we identified absorption features of Mg I (1.503 μm), Si I (1.589 μm) and CO (6-3) (1.619 μm), and measured the velocity dispersions of PG 0844+3490844+349 to be 132 ± 110 km s−1 and PG 1426+0151426+015 to be 264 ± 215 km s−1. By using an MBH–σMBHσ relation of elliptical galaxies, we derived the black hole (BH) mass of PG 0844+3490844+349, log(MBH/M)=7.7±5.5log(MBH/M)=7.7±5.5 and PG 1426+015,log(MBH/M)=9.0±7.51426+015,log(MBH/M)=9.0±7.5. These values are consistent with the BH mass values from broad emission lines with an assumption of a virial factor of 5.5.  相似文献   

15.
The interaction of galactic cosmic rays (GCRs) and solar energetic particles (SEPs) with the lunar surface produces secondary radiations as neutrons. The study of the production and attenuation of these neutrons in the lunar soil is very important to estimate the annual ambient dose equivalent on the lunar surface and for lunar nuclear spectroscopy. Also, understanding the attenuation of fast neutrons in lunar soils can help in measuring of the lunar neutron density profile and to measure the neutron flux on the lunar surface. In this paper, the attenuation of fast neutrons in different lunar soils is investigated. The macroscopic effective removal cross section (ΣR)(ΣR) of fast neutrons was theoretically calculated from the mass removal cross-section values (ΣR/ρ)(ΣR/ρ) for various elements in soils. The obtained values of (ΣR)(ΣR) were discussed according to the density. The results show that the attenuation of fast neutrons is more important in the landing sites of Apollo 12 and Luna 16 than the other landing sites of Apollo and Luna missions.  相似文献   

16.
The paper deals with the relation of the southern orientation of the north–south component BzBz of the interplanetary magnetic field to geomagnetic activity (GA) and subsequently a method is suggested of using the found facts to forecast potentially dangerous high GA. We have found that on a day with very high GA hourly averages of BzBz with a negative sign occur at least 16 times in typical cases. Since it is very difficult to estimate the orientation of BzBz in the immediate vicinity of the Earth one day or even a few days in advance, we have suggested using a neural-network model, which assumes the worse of the possibilities to forecast the danger of high GA – the dominant southern orientation of the interplanetary magnetic field. The input quantities of the proposed model were information about X-ray flares, type II and IV radio bursts as well as information about coronal mass ejections (CME). In comparing the GA forecasts with observations, we obtain values of the Hanssen–Kuiper skill score ranging from 0.463 to 0.727, which are usual values for similar forecasts of space weather. The proposed model provides forecasts of potentially dangerous high geomagnetic activity should the interplanetary CME (ICME), the originator of geomagnetic storms, hit the Earth under the most unfavorable configuration of cosmic magnetic fields. We cannot know in advance whether the unfavorable configuration is going to occur or not; we just know that it will occur with the probability of 31%.  相似文献   

17.
18.
This study presents results on the investigation of the diurnal, monthly and seasonal variability of Total Electron Content (TEC), phase (σΦσΦ) and amplitude (S4) scintillation indices over Ugandan (Low latitude) region. Scintillation Network Decision Aid (SCINDA) data was obtained from Makerere (0.34°N, 32.57°E) station, Uganda for two years (2011 and 2012). Data from two dual frequency GPS receivers at Mbarara (0.60°S, 30.74°E) and Entebbe (0.04°N, 32.44°E) was used to study TEC climatology during the same period of scintillation study. The results show that peak TEC values were recorded during the months of October–November, and the lowest values during the months of July–August. The diurnal peak of TEC occurs between 10:00 and 14:00 UT hours. Seasonally, the ascending and descending phases of TEC were observed during the equinoxes (March and September) and solstice (June and December), respectively. The scintillations observed during the study were classified as weak (0.1≤S4,σΦσΦ0.3) and strong (0.3<<S4,σΦσΦ1.0). The diurnal scintillation pattern showed peaks between 17:00 and 22:00 UT hour, while the seasonal pattern follows the TEC pattern mentioned above. Amplitude scintillation was more dominant than phase scintillation during the two years of the study. Scintillation peaks occur during the months of March–April and September–October, while the least scintillations occur during the months of June–July. Therefore, the contribution of this study is filling the gap in the current documentation of amplitude scintillation without phase scintillation over the Ugandan region. The scintillations observed have been attributed to wave-like structures which have periods of about 2–3 h, in the range of that of large scale travelling ionospheric disturbances (LSTIDs).  相似文献   

19.
The effects of the energetic phenomena of the Sun, flares and coronal mass ejections (CMEs) on the Earth’s ionosphere–magnetosphere, through the solar wind, are the sources of the geomagnetic disturbances and storms collectively known as Space Weather. The research on the influence of Space Weather on biological and physiological systems is open. In this work we study the Space Weather   impact on Acute Coronary Syndromes (ACS) distinguishing between ST-segment elevation acute coronary syndromes (STE–ACS) and non-ST-segment elevation acute coronary syndromes (NSTE–ACS) cases. We compare detailed patient records from the 2nd Cardiologic Department of the General Hospital of Nicaea (Piraeus, Greece) with characteristics of geomagnetic storms (DSTDST), solar wind speed and statistics of flares and CMEs which cover the entire solar cycle 23 (1997–2007). Our results indicate a relationship of ACS to helio-geomagnetic activity as the maximum of the ACS cases follows closely the maximum of the solar cycle. Furthermore, within very active periods, the ratio NSTE–ACS to STE–ACS, which is almost constant during periods of low to medium activity, changes favouring the NSTE–ACS. Most of the ACS cases exhibit a high degree of association with the recovery phase of the geomagnetic storms; a smaller, yet significant, part was found associated with periods of fast solar wind without a storm.  相似文献   

20.
Central peaks of 24 lunar craters, having mafic rocks, were studied to estimate their average titanium content and infer the nature of the subsurface lithologies. Titanium contents were derived from Clementine UV–Vis data (415, 750 nm) following the approach of Lucey et al. [Lucey, P.G., Blewett, D.T. and Jolliff, B.L., Lunar iron and titanium abundance algorithms based on final processing of Clementine ultraviolet–visible images, J. Geophys. Res.106 (E8), 20297–20,305, 2000]. TiO2TiO2 content exceeding 1 wt% suggests presence of mantle derived mafic sub-surface rock types (plutonic/volcanic) within the central peaks. Even though, the algorithm used for deriving titanium content is susceptible to variation in topography and sun angle, especially at higher latitudes, careful selection and analyses of data for regions within the central peaks revealed compositional heterogeneities. The results indicate a preponderance of mafic lithologies with low TiO2TiO2 content (<1 wt%) in the central peaks of lunar craters populating the equatorial region. Average titanium content of central peaks can serve as a useful tracer for distinguishing mantle derived mafic subsurface lithologies from those formed during global magma ocean episode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号