首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 49 毫秒
1.
The detailed study of the solar-terrestrial energy chain will be greatly enhanced with the launch and simultaneous operation of several spacecraft during the current decade. These programs are being coordinates in the United States under the umbrella of the International Solar Terrestrial Physics Program (ISTP) and include fundamental contributions from Japan (GEOTAIL Program) and Europe (SOHO and CLUSTER Programs). The principal United States contribution to this effort is the Global Geospace Science Program (GGS) described in this overview paper. Two spacecraft, WIND and POLAR, carrying an advanced complement of field, particle and imaging instruments, will conduct investigations of several key regions of geospace. This paper provides a general overview of the science objectives of the missions, the spacecraft orbits and the ground elements that have been developed to process and analyze the instrument observations.  相似文献   

2.
JIRAM is an imager/spectrometer on board the Juno spacecraft bound for a polar orbit around Jupiter. JIRAM is composed of IR imager and spectrometer channels. Its scientific goals are to explore the Jovian aurorae and the planet’s atmospheric structure, dynamics and composition. This paper explains the characteristics and functionalities of the instrument and reports on the results of ground calibrations. It discusses the main subsystems to the extent needed to understand how the instrument is sequenced and used, the purpose of the calibrations necessary to determine instrument performance, the process for generating the commanding sequences, the main elements of the observational strategy, and the format of the scientific data that JIRAM will produce.  相似文献   

3.
Vitally important to the success of any mission is the ground support system used for commanding the spacecraft, receiving the telemetry, and processing the results. We describe the ground system used for the STEREO mission, consisting of the Mission Operations Center, the individual Payload Operations Centers for each instrument, and the STEREO Science Center, together with mission support from the Flight Dynamics Facility, Deep Space Mission System, and the Space Environment Center. The mission planning process is described, as is the data flow from spacecraft telemetry to processed science data to long-term archive. We describe the online resources that researchers will be able to use to access STEREO planning resources, science data, and analysis software. The STEREO Joint Observations Program system is described, with instructions on how observers can participate. Finally, we describe the near-real-time processing of the “space weather beacon” telemetry, which is a low telemetry rate quicklook product available close to 24 hours a day, with the intended use of space weather forecasting.  相似文献   

4.
A broad, international, cooperative effort is under way to study and develop quantitative understanding of the fundamental electrodynamic processes in the solar-terrestrial environment. Japan, Europe, Russia, the United States, and other countries are providing spacecraft to be placed in key regions with the aim of utilizing coordinated, multipoint spaceflight measurements, ground-based observations, and theory to study the global energy budget of geospace. The U.S. contribution began in the late 1970's as the OPEN program (Origin of Plasmas in Earth's Neighborhood) and was reconstituted in the 1980's as the Global Geospace Science (GGS) program. The international effort, known in the U. S. as the International Solar Terrestrial Physics program (ISTP), began with the launch of the Japanese GEOTAIL in 1992, and will continue with the U. S. spacecraft WIND and POLAR in 1994–1995, and the European four-spacecraft Cluster fleet and its Solar and Heliospheric Observatory (SOHO) in 1995. Russia will launch its Interball set of four spacecraft in 1995. The Inter-Agency Consultative Group (IACG) is promoting the coordination of the spacecraft observations by means of scientific campaigns aimed at addressing scientific questions that can only be answered by observations from the multiple spacecraft. The Solar Terrestrial Energy Program (STEP) is coordinating the involvement of the broad scientific community and especially the correlative ground observations.  相似文献   

5.
单片机在航箭发控系统通用检测仪中的应用   总被引:1,自引:0,他引:1  
目前航空火箭武器仍是歼击机上主要对地攻击武器之一.但现有的航箭发控系统检测仪既不具有通用性,又不能测试航箭发射脉冲参数.为此,利用单片机技术设计了航箭发控系统通用检测仪.介绍了检测仪的设计方法,给出了较为详细的硬件组成和软件流程.该仪器现已装备部队,经使用证明,该检测仪操作简单、显示直观、清晰、记录准确、通用性强、满足设计.  相似文献   

6.
The International Solar-Terrestrial Physics (ISTP) program will provide simultaneous coordinated scientific measurements from most of the major areas of geospace including specific locations on the Earth's surface. This paper describes the comprehensive ISTP ground science data handling system which has been developed to promote optimal mission planning and efficient data processing, analysis and distribution. The essential components of this ground system are the ISTP Central Data Handling Facility (CDHF), the Information Processing Division's Data Distribution Facility (DDF), the ISTP/Global Geospace Science (GGS) Science Planning and Operations Facility (SPOF) and the NASA Data Archive and Distribution Service (NDADS).The ISTP CDHF is the one place in the program where measurements from this wide variety of geospace and ground-based instrumentation and theoretical studies are brought together. Subsequently, these data will be distributed, along with ancillary data, in a unified fashion to the ISTP Principal Investigator (PI) and Co-Investigator (CoI) teams for analysis on their local systems. The CDHF ingests the telemetry streams, orbit, attitude, and command history from the GEOTAIL, WIND, POLAR, SOHO, and IMP-8 Spacecraft; computes summary data sets, called Key Parameters (KPs), for each scientific instrument; ingests pre-computed KPs from other spacecraft and ground basel investigations; provides a computational platform for parameterized modeling; and provides a number of data services for the ISTP community of investigators. The DDF organizes the KPs, decommutated telemetry, and associated ancillary data into products for duistribution to the ISTP community on CD-ROMs. The SPOF is the component of the GGS program responsible for the development and coordination of ISTP science planning operations. The SPOF operates under the direction of the ISTP Project Scientist and is responsible for the development and coordination of the science plan for ISTP spacecraft. Instrument command requests for the WIND and POLAR investigations are submitted by the PIs to the SPOF where they are checked for science conflicts, forwarded to the GSFC Command Management Syntem/Payload Operations Control Center (CMS/POCC) for engineering conflict validation, and finally incorporated into the conflict-free science operations plan. Conflict resolution is accomplished through iteration between the PIs, SPOF and CMS and in consultation with the Project Scientist when necessary. The long term archival of ISTP KP and level-zero data will be undertaken by NASA's National Space Science Data Center using the NASA Data Archive and Distribution Service (NDADS). This on-line archive facility will provide rapid access to archived KPs and event data and includes security features to restrict access to the data during the time they are proprietary.  相似文献   

7.
8.
The Lunar Reconnaissance Orbiter Laser Ranging Investigation   总被引:1,自引:0,他引:1  
The objective of the Lunar Reconnaissance Orbiter (LRO) Laser Ranging (LR) system is to collect precise measurements of range that allow the spacecraft to achieve its requirement for precision orbit determination. The LR will make one-way range measurements via laser pulse time-of-flight from Earth to LRO, and will determine the position of the spacecraft at a sub-meter level with respect to ground stations on Earth and the center of mass of the Moon. Ranging will occur whenever LRO is visible in the line of sight from participating Earth ground tracking stations. The LR consists of two primary components, a flight system and ground system. The flight system consists of a small receiver telescope mounted on the LRO high-gain antenna that captures the uplinked laser signal, and a fiber optic cable that routes the signal to the Lunar Orbiter Laser Altimeter (LOLA) instrument on LRO. The LOLA instrument receiver records the time of the laser signal based on an ultrastable crystal oscillator, and provides the information to the onboard LRO data system for storage and/or transmittal to the ground through the spacecraft radio frequency link. The LR ground system consists of a network of satellite laser ranging stations, a data reception and distribution facility, and the LOLA Science Operations Center. LR measurements will enable the determination of a three-dimensional geodetic grid for the Moon based on the precise seleno-location of ground spots from LOLA.  相似文献   

9.
The Advanced X-ray Astrophysics Facility (AXAF) planned for launch in the middle of the next decade will be a powerful new tool to enhance our understanding of the Universe. In this paper we describe the principal elements: the optics and the instruments. We review the instrument capabilities in order that potential users of AXAF may plan supporting research in the years prior to launch. We also review several of the scientific questions which AXAF is well suited to address.  相似文献   

10.
The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft was designed and constructed to withstand the harsh environments associated with achieving and operating in Mercury orbit. The system can be divided into eight subsystems: structures and mechanisms (e.g., the composite core structure, aluminum launch vehicle adapter, and deployables), propulsion (e.g., the state-of-the-art titanium fuel tanks, thruster modules, and associated plumbing), thermal (e.g., the ceramic-cloth sunshade, heaters, and radiators), power (e.g., solar arrays, battery, and controlling electronics), avionics (e.g., the processors, solid-state recorder, and data handling electronics), software (e.g., processor-supported code that performs commanding, data handling, and spacecraft control), guidance and control (e.g., attitude sensors including star cameras and Sun sensors integrated with controllers including reaction wheels), radio frequency telecommunications (e.g., the spacecraft antenna suites and supporting electronics), and payload (e.g., the science instruments and supporting processors). This system architecture went through an extensive (nearly four-year) development and testing effort that provided the team with confidence that all mission goals will be achieved. Larry E. Mosher passed away during the preparation of this paper.  相似文献   

11.
Following the launch and commissioning of NASA’s Radiation Belt Storm Probes (RBSP) in 2012, space weather data will be generated and broadcast from the spacecraft in near real-time. The RBSP mission targets one part of the space weather chain: the very high energy electrons and ions magnetically trapped within Earth’s radiation belts. The understanding gained by RBSP will enable us to better predict the response of the radiation belts to solar storms in the future, and thereby protect space assets in the near-Earth environment. This chapter details the presently planned RBSP capabilities for generating and broadcasting near real-time space weather data, discusses the data products, the ground stations collecting the data, and the users/models that will incorporate the data into test-beds for radiation belt nowcasting and forecasting.  相似文献   

12.
The magnetometer on the POLAR Spacecraft is a high precision instrument designed to measure the magnetic fields at both high and low altitudes in the polar magnetosphere in 3 ranges of 700, 5700, and 47000 nT. This instrument will be used to investigate the behavior of fieldaligned current systems and the role they play in the acceleration of particles, and it will be used to study the dynamic fields in the polar cusp, magnetosphere, and magnetosheath. It will measure the coupling between the shocked magnetosheath plasma and the near polar cusp magnetosphere where much of the solar wind magnetosphere coupling is thought to take place. Moreover, it will provide measurements critical to the interpretation of data from other instruments. The instrument design has been influenced by the needs of the other investigations for immediately useable magnetic field data and high rate (100+vectors s–1) data distributed on the spacecraft. Data to the ground includes measurements at 10 vectors per second over the entire orbit plus snapshots of 100 vectors per second data. The design provides a fully redundant instrument with enhanced measurement capabilities that can be used when available spacecraft power permits.  相似文献   

13.
The space-based observatories SOHO and TRACE have shown some very interesting results on the structure and dynamics of the Sun and its atmosphere, e.g., the extremely high ion temperatures or the enormous variability in the corona. But one question is still open to debate: how to use these data to distinguish between different types of physical heating processes, as, e.g., absorption of high-frequency Alfvén-waves or reconnection events? This paper will discuss some possibilities on how to tackle this type of question. These include observations of ion temperature anisotropies and electron temperatures in the corona as well as measurements of coronal magnetic fields. Emphasis will be put on simultaneous observations of the whole solar atmosphere from the photosphere into the solar wind and on solar-stellar connections. In the light of these ideas new proposed space missions as well as ground based efforts will be discussed.  相似文献   

14.
Observations made during the 1991 total solar eclipse and recent observations from NSO/Sac Peak are discussed. The ground-based density measurements will be complimentary to SOHO observations, particularly SOHO electron density measurements.Operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under cooperative agreement with the National Science Foundation  相似文献   

15.
The Dawn spacecraft is designed to travel to and operate in orbit around the two largest main belt asteroids, Vesta and Ceres. Developed to meet a ten-year life and fully redundant, the spacecraft accommodates an ion propulsion system, including three ion engines and xenon propellant tank, utilizes large solar arrays to power the engines, carries the science instrument payload, and hosts the hardware and software required to successfully collect and transmit the scientific data back to Earth. The launch of the Dawn spacecraft in September 2007 from Cape Canaveral Air Force Station was the culmination of nearly five years of design, development, integration and testing of this unique system, one of the very few scientific spacecraft to rely on ion propulsion. The Dawn spacecraft arrived at its first destination, Vesta, in July 2011, where it will conduct science operations for twelve months before departing for Ceres.  相似文献   

16.
系留气球系统三拉索收放状态建模与仿真   总被引:1,自引:0,他引:1  
系留气球是一种依靠气囊内的浮升气体获得浮力,并用缆索拴系固定的浮空器。系留气球、三根机械拉索、地面转动梁等构成系留气球三拉索收放系统,综合考虑收放系统中三拉索的运动特性,采用Matlab/Sim-ulink工具对近地三拉索收放运动进行系统建模,建立了整体的三拉索收放运动状态的仿真模型,仿真结果表明:仿真计算结果与实际飞...  相似文献   

17.
The Solar and Heliospheric Observatory (SOHO) — a space observatory to be placed, in 1995, 1.5 Gm sunward from the Earth in a halo orbit around the L1 Lagrange point — will investigate:
  • the solar corona, its heating and expansion into the solar wind, by both studying the radiation emerging from the outer solar atmosphere and in-situ solar wind measurements near 1 AU, and
  • the structure and dynamics of the solar interior by the method of helioseismology.
  • The science policy evolution leading to this comprehensive observatory concept is described. SOHO's link to the space-plasma-physics mission CLUSTER — devoted to the three-dimensional study of small structures in the magnetosphere — within the Solar Terrestrial Science Programme (STSP) and the embedding of STSP in the much larger International Solar Terrestrial Physics (ISTP) Programme are cited as well. The scientific subjects to be addressed by SOHO are introduced, and their current status assessed. Subsequently, the measurements required to advance these subjects are stated quantitatively and the payload, which will actually perform these measurements, is presented. The mission design, comprising spacecraft, orbit, operations and the data and ground systems are described. The special efforts made to obtain a reliable radiometric calibration of the instruments observing the Sun in the extreme-ultraviolet and to achieve a stable sensitivity through extreme cleanliness of spacecraft and instruments are emphasized and substantiated.  相似文献   

    18.
    Both sensors of the SEIS instrument (VBBs and SPs) are mounted on the mechanical leveling system (LVL), which has to ensure a level placement on the Martian ground under currently unknown local conditions, and provide the mechanical coupling of the seismometers to the ground. We developed a simplified analytical model of the LVL structure in order to reproduce its mechanical behavior by predicting its resonances and transfer function. This model is implemented numerically and allows to estimate the effects of the LVL on the data recorded by the VBBs and SPs on Mars. The model is validated through comparison with the horizontal resonances (between 35 and 50 Hz) observed in laboratory measurements. These modes prove to be highly dependent of the ground horizontal stiffness and torque. For this reason, an inversion study is performed and the results are compared with some experimental measurements of the LVL feet’s penetration in a martian regolith analog. This comparison shows that the analytical model can be used to estimate the elastic ground properties of the InSight landing site. Another application consists in modeling the 6 sensors on the LVL at their real positions, also considering their sensitivity axes, to study the performances of the global SEIS instrument in translation and rotation. It is found that the high frequency ground rotation can be measured by SEIS and, when compared to the ground acceleration, can provide ways to estimate the phase velocity of the seismic surface waves at shallow depths. Finally, synthetic data from the active seismic experiment made during the HP3 penetration and SEIS rotation noise are compared and used for an inversion of the Rayleigh phase velocity. This confirms the perspectives for rotational seismology with SEIS which will be developed with the SEIS data acquired during the commissioning phase after landing.  相似文献   

    19.
    空中发射可以明显提高火箭有效载荷,减少火箭发射场地的数量和高额的维护经费,缩短发射周期。本文研究了空中发射初始状态对运载火箭有效载荷的影响,通过飞行轨道的模型简化,首先建立了火箭飞行的数学模型,然后定量地分析了发射高度和发射速度对火箭入轨后有效载荷的影响。研究结果表明:若提高发射高度和发射速度,可以明显增加有效载荷,且基本发射高度、发射速度分别与有效载荷表现为线性关系。相对地面发射来说,如果初始高度达到30千米,有效载荷提升到1.63倍;如果初始高度达到30千米,初始速度达到1000米每秒(约3马赫),有效载荷将是传统地面发射的5.43倍。单纯从初始高度和速度的因素看,初始发射速度对有效载荷提升的影响更显著,故在考虑经济性情况下设计发射平台时应更加注重发射速度的提高。  相似文献   

    20.
    THEMIS—a five-spacecraft constellation to study magnetospheric events leading to auroral outbursts—launched on February 17, 2007. All aspects of operations are conducted at the Mission Operations Center at the University of California at Berkeley. Activities of the multi-mission operations team include mission and science operations, flight dynamics and ground station operations. Communications with the constellation are primarily established via the Berkeley Ground Station, while NASA’s Ground Network provides secondary pass coverage. In addition, NASA’s Space Network supports maneuver operations near perigee. Following a successful launch campaign, the operations team performed on-orbit probe bus and instrument check-out and commissioning tasks, and placed the constellation initially into a coast phase orbit configuration to control orbit dispersion and conduct initial science operations during the summer of 2007. Mission orbit placement was completed in the fall of 2007, in time for the first winter observing season in the Earth’s magnetospheric tail. Over the course of the first 18 months of on-orbit constellation operations, procedures for instrument configuration, science data acquisition and navigation were refined, and software systems were enhanced. Overall, the implemented ground systems at the Mission Operations Center proved to be very successful and completely adequate to support reliable and efficient constellation operations. A high degree of systems automation is employed to support lights-out operations during off-hours.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号