首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 311 毫秒
1.
Dawn??s ion propulsion system (IPS) is the most advanced propulsion system ever built for a deep-space mission. Aside from the Mars gravity assist it provides all of the post-launch ??V required for the mission including the heliocentric transfer to Vesta, orbit capture at Vesta, transfer to various Vesta science orbits, escape from Vesta, the heliocentric transfer to Ceres, orbit capture at Ceres, and transfer to the different Ceres science orbits. The ion propulsion system provides a total ??V of nearly 11 km/s, comparable to the ??V provided by the 3-stage launch vehicle, and a total impulse of 1.2×107 N?s.  相似文献   

2.
The Dawn mission??s Education and Public Outreach (E/PO) program takes advantage of the length of the mission, an effort to maintain level funding, and the exceptional support of the science and engineering teams to create formal and informal educational materials that bring STEM content and modes of thinking to students of all ages. With materials that are based on researched pedagogical principles and aligned with science education standards, Dawn weaves together many aspects of the mission to engage students, teachers, and the general public. E/PO tells the story of the discovery of the asteroid belt, uncovers principles of physics behind the ion propulsion that powers the spacecraft, and explains what we can learn from the instrumentation and how the mission??s results will expand our understanding of the origins of the solar system. In this way, we not only educate and inform, we build anticipation and expectation in the general public for the spacecraft??s arrival at Vesta in 2011 and three years later at Ceres. This chapter discusses the organization, strategies, formative assessment and dissemination of these materials and activities, and includes a section on lessons learned.  相似文献   

3.
The Dawn science operations team has designed the Vesta mission within the constraints of a low-cost Discovery mission, and will apply the same methodology to the Ceres mission. The design employs proactive mapping mission strategies and tactics such as functional redundancy, adaptability to trajectory uncertainties, and easy sequence updates to deliver reliable and robust sequences. Planning tools include the Science Opportunity Analyzer and other multi-mission tools, and the Science time-ordered listings. Science operations are conducted jointly by the Science Operations Support Team at the Jet Propulsion Laboratory (JPL) and the Dawn Science Center at the University of California, Los Angeles (UCLA). The UCLA Dawn Science Center has primary responsibility for data archiving while the JPL team has primary responsibility for spacecraft and instrument operations. Constraints and uncertainties in the planning and sequencing environment are described, and then details of the science plan are presented for each mission sub-phase. The plans indicate that Dawn has a high probability of meeting its science objectives and requirements within the imposed constraints.  相似文献   

4.
The objective of the Dawn topography investigation is to derive the detailed shapes of 4 Vesta and 1 Ceres in order to create orthorectified image mosaics for geologic interpretation, as well as to study the asteroids?? landforms, interior structure, and the processes that have modified their surfaces over geologic time. In this paper we describe our approaches for producing shape models, plans for acquiring the needed image data for Vesta, and the results of a numerical simulation of the Vesta mapping campaign that quantify the expected accuracy of our results. Multi-angle images obtained by Dawn??s framing camera will be used to create topographic models with 100 m/pixel horizontal resolution and 10 m height accuracy at Vesta, and 200 m/pixel horizontal resolution and 20 m height accuracy at Ceres. Two different techniques, stereophotogrammetry and stereophotoclinometry, are employed to model the shape; these models will be merged with the asteroidal gravity fields obtained by Dawn to produce geodetically controlled topographic models for each body. The resulting digital topography models, together with the gravity data, will reveal the tectonic, volcanic and impact history of Vesta, and enable co-registration of data sets to determine Vesta??s geologic history. At Ceres, the topography will likely reveal much about processes of surface modification as well as the internal structure and evolution of this dwarf planet.  相似文献   

5.
The Dawn Gravity Investigation at Vesta and Ceres   总被引:2,自引:0,他引:2  
The objective of the Dawn gravity investigation is to use high precision X-band Doppler tracking and landmark tracking from optical images to measure the gravity fields of Vesta and Ceres to a half-wavelength surface resolution better than 90-km and 300-km, respectively. Depending on the Doppler tracking assumptions, the gravity field will be determined to somewhere between harmonic degrees 15 and 25 for Vesta and about degree 10 for Ceres. The gravity fields together with shape models determined from Dawn??s framing camera constrain models of the interior from the core to the crust. The gravity field is determined jointly with the spin pole location. The second degree harmonics together with assumptions on obliquity or hydrostatic equilibrium may determine the moments of inertia.  相似文献   

6.
Ceres appears likely to be differentiated and to have experienced planetary evolution processes. This conclusion is based on current geophysical observations and thermodynamic modeling of Ceres?? evolution. This makes Ceres similar to a small planet, and in fact it is thought to represent a class of objects from which the inner planets formed. Verification of Ceres?? state and understanding of the many steps in achieving it remains a major goal. The Dawn spacecraft and its instrument package are on a mission to observe Ceres from orbit. Observations and potential results are suggested here, based on number of science questions.  相似文献   

7.
The Dawn Framing Camera   总被引:1,自引:0,他引:1  
The Framing Camera (FC) is the German contribution to the Dawn mission. The camera will map 4 Vesta and 1 Ceres through a clear filter and 7 band-pass filters covering the wavelengths from the visible to the near-IR. The camera will allow the determination of the physical parameters of the asteroids, the reconstruction of their global shape as well as local topography and surface geomorphology, and provide information on composition via surface reflectance characteristics. The camera will also serve for orbit navigation. The resolution of the Framing Camera will be up to 12 m per pixel in low altitude mapping orbit at Vesta (62 m per pixel at Ceres), at an angular resolution of 93.7 ??rad?px?1. The instrument uses a reclosable front door to protect the optical system and a filter-wheel mechanism to select the band-pass for observation. The detector data is read out and processed by a data processing unit. A power converter unit supplies all required power rails for operation and thermal maintenance. For redundancy reasons, two identical cameras were provided, both located side by side on the +Z-deck of the spacecraft. Each camera has a mass of 5.5 kg.  相似文献   

8.
9.
Vesta and Ceres are the largest members of the asteroid belt, surviving from the earliest phases of Solar System history. They formed at a time when the asteroid belt was much more massive than it is today and were witness to its dramatic evolution, where planetary embryos were formed and lost, where the collisional environment shifted from accretional to destructive, and where the current size distribution of asteroids was sculpted by mutual collisions and most of the asteroids originally present were lost by dynamical processes. Since these early times, the environment of the asteroid belt has become relatively quiescent, though over the long history of the Solar System the surfaces of Vesta and Ceres continue to record and be influenced by impacts, most notably the south polar cratering event on Vesta. As a consequence of such impacts, Vesta has contributed a significant family of asteroids to the main belt, which is the likely source of the HED meteorites on Earth. No similar contribution to the main belt (or meteorites) is evident for Ceres. Through studies of craters, the surfaces of these asteroids will offer an opportunity for Dawn to probe the modern population of small asteroids in a size regime not directly observable from Earth.  相似文献   

10.
The instruments on the Dawn spacecraft are exceptionally well suited to characterize and map the surface composition of Vesta in an integrated manner. These include a framing camera with multispectral capabilities, a high spectral resolution near-infrared imaging spectrometer, and a gamma-ray and neutron spectrometer. Three examples of issues addressed at Vesta are: (1) What is the composition of Vesta??s interior and differentiation state as exposed by the Great South Crater? (2) How has space weathering affected Vesta, both globally and at a local scale? and (3) Are volatiles or hydrated material present on Vesta??s surface? We predict that Dawn finds many surprises, such as an olivine-bearing mantle exposed near the south-pole, a weakly or un-weathered surface that has been relatively recently resurfaced, and a very thin layer of surficial volatiles derived from interaction with the solar wind.  相似文献   

11.
Howardite-eucrite-diogenite (HED) meteorites, thought to be derived from 4 Vesta, provide the best sampling available for any differentiated asteroid. However, deviations in oxygen isotopic composition from a common mass-fractionation line suggest that a few eucrite-like meteorites are from other bodies, or that Vesta was not completely homogenized during differentiation. The petrology and geochemistry of HEDs provide insights into igneous processes that produced a crust composed of basalts, gabbros, and ultramafic cumulate rocks. Although most HED magmas were fractionated, it is unresolved whether some eucrites may have been primary melts. The geochemistry of HEDs indicates that bulk Vesta is depleted in volatile elements and is relatively reduced, but has chondritic refractory element abundances. The compositions of HEDs may favor a magma ocean model, but inconsistencies remain. Geochronology indicates that Vesta accreted and differentiated within the first several million years of solar system history, that magmatism continued over a span of ??10 Myr, and that its thermal history extended for perhaps 100 Myr. The protracted cooling history is probably responsible for thermal metamorphism of most HEDs. Impact chronology indicates that Vesta experienced many significant collisions, including during the late heavy bombardment. The age of the huge south pole crater is controversial, but it probably ejected Vestoids and many HEDs. Continued impacts produced a regolith composed of eucrite and diogenite fragments containing only minor exotic materials. HED meteorites serve as ground truth for orbital spectroscopic and chemical analyses by the Dawn spacecraft, and their properties are critical for instrument calibration and interpretation of Vesta??s geologic history.  相似文献   

12.
Exploration of the planets beyond Mars and their surroundings is already planned. Astronomy researchers are citing important information that can be obtained with instrumented spacecraft that fly beyond the planets of our solar system. Spacecraft flying these missions need power for performing their functions and communicating with Earth stations. Sunlight in these zones is so weak that alternative energy sources are needed. An alternative power source for deep-space missions is radioisotope heated energy converters.. The choice of heat-to-electric power conversion is narrowing to: 1) the Stirling engine; and 2) a combined cycle with thermionic and alkali-metal thermoelectric (AMTEC) heat-to-electricity conversion. For propulsion into deep space, a nuclear-reactor-heated AMTEC energy converter that powers ion engines can become the best alternative to hoisting tons of rockets into Earth orbit.  相似文献   

13.
赖承祺  顾左  宋莹莹  王蒙  郭伟龙  吴辰宸 《推进技术》2019,40(10):2183-2189
为预估与提高航天器有效载荷能力,结合航天运输系统理论与离子推力器放电模型,对深空探测任务中以离子电推进系统为主要动力来源的航天器有效载荷能力进行了分析。通过理论推导,构建并揭示了有效载荷分数与深空探测任务参数和电推进系统性能参数的函数关系与潜在联系。结果表明:动力装置单位质量越小,航天器所能达到的最佳有效载荷分数越大;有效载荷分数的高低与离子引出份额、原初电子利用率参数的大小以及任务时间的长短呈正相关;当离子电推进系统可以达到更高的载荷比时,则需要更高的工质利用率作为支持。  相似文献   

14.
基于模型的故障诊断方法在飞船推进系统中的应用   总被引:5,自引:2,他引:3       下载免费PDF全文
在飞船推进系统的物理和数学模型的基础上,研究了基于模型的故障诊断方法在飞船推进系统中的应用。该方法是某飞船推进系统状态监测与故障诊断专家系统中的关键技术之一。仿真结果表明,这项技术的提出和应用使得根据系统模型对推进系统的不可预知故障进行监测和诊断成为可能。  相似文献   

15.
The Ball Micromission Spacecraft (MSC) is a multi-purpose platform capable of supporting science missions at distances from the Sun ranging from 0.7 to 1.7 AU. In the baseline scenario, MSC is launched as a secondary payload on an Ariane 5 rocket from Kourou, French Guiana, to GTO using the Ariane 5 structure for auxiliary payloads (ASAP5). The maximum launch wet mass is 242 Kg and can include up to 45 Kg of payload depending on AV needs. The on-board propulsion system is used for maneuvering in the Earth-Moon system and injecting the spacecraft into its final orbit or trajectory. For Mars missions, MSC enables orbiting Mars for science payloads and/or communications and navigation assets, or for precision Mars fly-bys to drop up to six probes. The micromissions spacecraft bus can be used for science targets other than Mars, including the Moon, Earth, Venus, Earth-Sun Lagrange points, or other small bodies. This paper summarizes the current spacecraft concept and describes the multimission spacecraft bus implementation in more detail.  相似文献   

16.
载人航天器推进系统健康监测的组件技术研究   总被引:3,自引:1,他引:2       下载免费PDF全文
为了适应载人航天器推进系统多发动机的分布式结构,提高健康监测系统的可靠性,应用组件技术构造了分布式多智能组件集成的健康监测系统,给出了组件之间的协调修正和决策算法。原型系统仿真结果表明,该技术比传统的面向对象(OOP)技术更适用于分布式系统,可应用于载人航天器推进系统的健康监测。  相似文献   

17.
Electric propulsion has emerged as a cost-effective solution to a wide range of satellite applications. Deep Space 1 successfully demonstrated electric propulsion as the primary propulsion source for a satellite. The POWOW concept is a solar-electric propelled spacecraft capable of significant cargo and short trip times for traveling to Mars. It would enter aerosynchronous orbit and from there, beam power to surface installations via lasers. The concept has been developed with industrial partner expertise in high efficiency solar cells, advanced concentrator modules, innovative arrays, and high power electric propulsion systems. The latest version of the spacecraft, the technologies used, and trip times to Mars are presented. The POWOW spacecraft is a general purpose solar electric propulsion system that uses new technologies that are directly applicable to commercial and government spacecraft with power levels ranging from a LEO power level of 4 kW up to GEO spacecraft about 1 MW. The system is modular, expandable, and amenable to learning curve cost projection methods  相似文献   

18.
吴建军  郑威 《推进技术》2004,25(1):1-3,10
提出了一种新的描述液体火箭发动机系统的定性模型,阐述了系统部件行为模型和结构模型的构建方法,给出了求解基于关系模型诊断问题的推理机制,建立了液体火箭发动机基于关系模型的故障诊断方法。以空间推进系统为研究对象进行了实例诊断分析,结果表明:该方法是一种有效的基于定性模型故障诊断方法。  相似文献   

19.
涡轮-冲压组合发动机技术发展浅析   总被引:4,自引:0,他引:4  
为了确定发展高超声速涡轮-冲压组合发动机的基本思路和分解关键技术,通过对涡轮-冲压组合发动机的基本概念和原理分析,以及国内外发展情况和应用前景等分析,提出了我国发展涡轮-冲压组合发动机的基本思路和需要解决的关键技术。  相似文献   

20.
Vesta and Ceres: Crossing the History of the Solar System   总被引:1,自引:0,他引:1  
The evolution of the Solar System can be schematically divided into three different phases: the Solar Nebula, the Primordial Solar System and the Modern Solar System. These three periods were characterized by very different conditions, both from the point of view of the physical conditions and from that of the processes there were acting through them. Across the Solar Nebula phase, planetesimals and planetary embryos were forming and differentiating due to the decay of short-lived radionuclides. At the same time, giant planets formed their cores and accreted the nebular gas to reach their present masses. After the gas dispersal, the Primordial Solar System began its evolution. In the inner Solar System, planetary embryos formed the terrestrial planets and, in combination with the gravitational perturbations of the giant planets, depleted the residual population of planetesimals. In the outer Solar System, giant planets underwent a violent, chaotic phase of orbital rearrangement which caused the Late Heavy Bombardment. Then the rapid and fierce evolution of the young Solar System left place to the more regular secular evolution of the Modern Solar System. Vesta, through its connection with HED meteorites, and plausibly Ceres too were between the first bodies to form in the history of the Solar System. Here we discuss the timescale of their formation and evolution and how they would have been affected by their passage through the different phases of the history of the Solar System, in order to draw a reference framework to interpret the data that Dawn mission will supply on them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号