首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The design and implementation of a switching regulator incorporating a high-frequency series-resonant converter and a combined FM and on-off feedback control is presented. The combined FM and on-off control results in a better conversion efficiency and a wider range of operational input voltage and output current. A 22.5 V, 50 W experimental regulator has been built to demonstrate the practicality of the circuit and its high efficiency, typically 92 to 96 percent, depending on the input and loading conditions.  相似文献   

2.
A novel single-stage half-bridge series-resonant buck-boost inverter (HB-SRBBI) is proposed. The main attribute of the novel inverter topology is the fact that it generates an ac output voltage larger or lower than the dc input one, depending on the instantaneous duty cycle. This property is not found in the classical voltage source inverter (VST), which produces an ac output instantaneous voltage always lower than the dc input voltage. The proposed inverter circuit topology provides the main switch for turn-on at zero-current-switching (ZCS) by an auxiliary resonant cell built before the output choke. A state-space averaging approach is employed to analyze the system. A design example of 500 W ac/dc inverter is examined to assess the inverter performance and it provides high power efficiency above 90.7% under the rated power.  相似文献   

3.
A new single-phase high power factor rectifier is proposed, which features regulation by conventional pulsewidth modulation (PWM), soft commutation, and instantaneous average line current control. A new zero-current-switching PWM (ZCS-PWM) auxiliary circuit is configured in the presented ZCS-PWM rectifier to perform ZCS in the switches and zero-voltage-switching (ZVS) in the diodes. Furthermore, soft commutation of the main switch is achieved without additional current stress by the presented ZCS-PWM auxiliary circuit. A significant reduction in the conduction losses is achieved, since the circulating current for the soft switching flows only through the auxiliary circuit and a minimum number of switching devices are involved in the circulating current path and the proposed rectifier uses a single converter instead of the conventional configuration composed of a four-diode front-end rectifier followed by a boost converter. Seven transition states for describing the behavior of the ZCS-PWM rectifier in one switching period are described. The PWM switch model is used to predict the system performance. A prototype rated at 1 kW, operating 60 kHz, with an input ac voltage of 220 V/sub rms/ and an output voltage 400 V/sub dc/ has been implemented in laboratory. An efficiency of 97.2% and power factor near 0.99 has been measured. The analysis and design of the control circuitry are also presented.  相似文献   

4.
A new class of AC/DC converter topologies (Type-1 converters) is described, suitable for use in an advanced single-phase sine-wave voltage, high-frequency power distribution system, of the type that was proposed for a 20 kHz Space Station primary electrical power distribution system. The converter comprises a transformer, a resonant network, a current controller, a diode rectifier, and an output filter. The input AC voltage source is converted into a sinusoidal current source using the resonant network. The output of this current source is rectified by the diode rectifier and is controlled by the current controller. The controlled rectified current is then filtered by the output filter to obtain a constant voltage across the load. Three distinct converter topologies, Type-1A, Type-1B, and Type 1-C, are described, and their performance characteristics are presented. All three types have a close-to-unity rated power factor (greater than 0.98), low total harmonic distortion in input current (less than 5%), and high conversion efficiency (greater than 96%)  相似文献   

5.
A single-phase ac/ac converter based on neutral-point-clamped scheme is proposed to perform unity input power factor and to provide a stable ac voltage to the critical loads. The ac/dc rectifier part is controlled to generate a unipolar pulsewidth modulation (PWM) waveform on the ac terminal by using four power switches with voltage stress of half the dc-link voltage. The carrier-based current control scheme is employed in the inner control loop to track the line current command. To regulate the dc bus voltage, a proportional-integral (PI) control is adopted in the outer control loop. The dc/ac inverter part of the system with four power switches is employed to generate a stable and clean sinusoidal output voltage to the critical load. The instantaneous current control scheme is used to track the output voltage command. To verify the effectiveness of the proposed control algorithm, the simulation and experimental results based on a laboratory prototype were implemented and discussed.  相似文献   

6.
The distributed power systems of future commercial aircraft will adopt variable frequency generation (360 to 800 Hz). Front-end converters in the system will be required to have a high efficiency and a low total harmonic distortion (THD) of the input current. This paper explains the design of a zero-voltage-switching (ZVS) active-clamped isolated low-harmonic SEPIC rectifier for such applications. Utilization of the transformer leakage inductance for ZVS and a single-layer transformer design contribute to a high efficiency. An accurate averaged switch model has been developed, which shows that the control-to-input-current transfer function of this converter does not exhibit resonances observed in the conventional SEPIC. As a result, for closed-loop operation using average current control, damping of the coupling capacitor is not required. Operating at a switching frequency of 200 kHz, an experimental 100 W, 28 V output rectifier achieves a THD of 3-4% and efficiency exceeding 90% over the entire line frequency range.  相似文献   

7.
The performance of the half-bridge (HB) zero-current-switched (ZCS) quasi-resonant converter (QRC) and zero-voltage-switched (ZVS) multiresonant converter (MRC) is compared with respect to their efficiency, input voltage range, semiconductor stresses, power density, and reliability. The efficiency of the HB ZVS-MRC at a given nominal input is shown to be highly dependent on the range of the input voltage, and it suffers when the converter has to be designed to cover a wide range. However, this is not the case for the HB ZCS-QRC. Experimental versions of the HB ZCS-QRC and HB ZVS-MRC were designed for the input voltage range from 150 to 350 V and a maximum output power of 100 W, under the same constraints, to facilitate their comparison  相似文献   

8.
Suitability of pulse train control technique for BIFRED converter   总被引:1,自引:0,他引:1  
Pulse Train/spl trade/ control scheme is presented and applied to a boost integrated flyback rectifier/energy storage dc-dc (BIFRED) converter operating in discontinuous conduction mode (DCM), which avoids the light-load high-voltage stress problem. In contrast to the conventional control techniques, the principal idea of Pulse Train technique is to regulate the output voltage using a series of high and low energy pulses generated by the current of the inductor. The applicability of the proposed technique to both the input and magnetizing inductances of BIFRED converter is investigated. Analysis of BIFRED converter operating in DCM as well as the output voltage ripple estimation is given. Experimental results on a prototype converter are also presented.  相似文献   

9.
A class-E DC-to-DC converter with half-wave controlled current rectifier is proposed. Its output voltage is controlled by the conduction angle of the rectifier switch at constant switching frequency. Zero voltage switching for all the switches can be maintained from full load to no load. Its steady state characteristics are analyzed and the effects of the circuit parameters are studied. Some extensions of the proposed converter are also discussed. The analysis is verified by PSPICE simulation and an experimental prototype  相似文献   

10.
A new dc-dc converter featuring a steep step-down of the input voltage is presented. It answers a typical need for on-board aeronautics modern power architectures: power supplies with a large conversion ratio able to deliver an output voltage of 1–1.2 V. The proposed structure is derived from a switched-capacitor circuit integrated with a buck converter; they share the same active switch. The proposed solution removes the electromagnetic interference (EMI) emission due to the large di/dt in the input current of the switched-capacitor power supplies. Compared with a quadratic buck converter, it presents a similar complexity, a smaller reduction in the line voltage at full load (but less conduction losses due to smaller input inductor current and capacitor voltage), lower voltage stresses on the transistor and diodes, lower current stresses in the diodes, and smaller size inductors. A similar structure using a buck-boost converter as the second stage is also presented. The experimental results confirm the theoretical developments.  相似文献   

11.
A stepped sinewave dc/ac inverter was analyzed for an inductive load with respect to load current and voltage, harmonics, power factor, and efficiency. This special inverter of high efficiency and low harmonic content is constructed by synthesizing the sinusoidal output by discrete voltage sources, such as storage batteries, solar cell, etc., with electronic switching of the sources at specific time intervals. The switching times are determined for the condition of minimum distortion of the synthesized wave. A 50 W inverter was built and tested to demonstrate this approach.  相似文献   

12.
Three control techniques for a high power factor multilevel pulsewidth modulation (PWM) rectifier are proposed. The proposed rectifier is based on series connection of full-bridge cell to achieve a high power factor, low current distortion, low voltage stress of power semiconductors and two balanced output voltages. The look-up table is used in the proposed control schemes to reduce the hardware circuit. A capacitor voltage compensator is used to balance two dc capacitor voltages in order to obtain high quality PWM voltage pattern. Based on the proposed control schemes, two-level or three-level PWM pattern can be generated on the ac side of the adopted rectifier. The proposed techniques for a high power factor multilevel rectifier illustrate its validity and effectiveness through the respective simulations and experiments. According to the measured results, the current harmonics drawn from the mains meet the International Electrotechnical Commission (IEC) 1000-3-2 limits  相似文献   

13.
A novel ac/dc/ac converter topology with three-level pulsewidth modulated (PWM) scheme for the single-phase ac/dc rectifier and random PWM scheme for ac drives is proposed. In order to improve the power quality in the single-phase rectifier, a ROM-based (read-only memory) control scheme, based on hysteresis current comparator, region detector, and capacitor compensator, is used to achieve a sinusoidal line current with low current distortion. The control scheme of the adopted three-level rectifier is easy to implement. The blocking voltage of power switches is clamped to half of the dc bus voltage. To reduce the mechanical vibration from an induction motor, random pulse position PWM scheme is adopted to spread the harmonics in a wide frequency range which results in the reduction of torque pulsation in the ac motor drives. Simulation and experimental results based on the laboratory prototype circuit are presented to verify the proposed control scheme  相似文献   

14.
A high power factor rectifier based on neutral point clamped scheme is proposed. The voltage stress of each power semiconductor of the adopted rectifier is equal to the half dc bus voltage instead of full dc link voltage in the conventional switching mode rectifier. The control signals of the power switches are derived from the dc link voltage balance compensator, line current controller, and dc link voltage regulator. The hysteresis current control scheme is employed to draw a clean sinusoidal line current, high input power factor, regulated dc link voltage, and balance capacitor voltages. Three voltage levels are generated on the ac terminal of the adopted rectifier. To verify the proposed operation scheme, performance characteristics are given by the experimental results.  相似文献   

15.
A frequency-domain steady-state analysis is given for a series-parallel resonant converter (SPRC) operating in the continuous conduction mode (CCM) using Fourier series techniques. Equations for performance parameters are derived under steady-state conditions to provide simple design tools. The topology of the SPRC combines the advantageous properties of both the series resonant converter (SRC) and the parallel resonant converter (PRC). The key results of the work are: a novel half-wave rectifier SPRC, conditions for obtaining high part-load efficiency; and several boundary frequencies and limiting conditions such as the capacitive/inductive load boundary and open-circuit and short-circuit cases. Experimental results measured for an 80-W converter above the resonance at different load resistances and input voltages show excellent agreement with the theoretical performance predicted by the equations  相似文献   

16.
A single-phase power factor preregulator to improve the power quality in the input side of an ac/dc/ac converter and a random pulsewidth modulation (PWM) to reduce the emitted noise energy and the mechanical vibration for an induction motor drive is proposed. The hysteresis current control (HCC) technique for a voltage source switching mode rectifier (SMR) is adopted. A control scheme is presented such that the line current is driven to follow the reference current which is derived from the dc bus voltage regulator and the output power estimator. A random pulse position technique for a three-phase voltage source inverter system to reduce the noise energy and resonant vibration from ac machine drive is described. By randomly varying the instantaneous pulse position in each switching frequency, the frequency distribution of harmonics is spread in a wide frequency range which results in reduction of torque pulsations in the ac motor drive systems. To investigate the proposed control scheme, experimental tests based on a laboratory prototype were implemented to show the nearly unity power factor at the SMR and reduce the noise energy concentrated at the specific tones  相似文献   

17.
The expression of the flyback converter output voltage (output power) is derived as a function of the supply voltage, load resistance, transformer ratios, transistor current gain, and base-circuit resistor value. Switching period and duty cycle are also calculated. A converter circuit is designed having stabilized output voltage, with respect to supply voltage, at constant load. The transistor base current is controlled by the supply voltage, via a nonlinear circuit. This feedforward circuit approximates with logarithmic characteristics the ideal hyperbolic dependence of the transistor base current as a function of the supply voltage. The converter has high performance and low cost. A cheaper circuit variant is presented, in which the high-voltage control transistor was eliminated.  相似文献   

18.
Single-phase grid-connected PV system using three-arm rectifier-inverter   总被引:1,自引:0,他引:1  
A grid-connected photovoltaic (PV) power supply system with on-line voltage regulation capability is presented. It employs the three-arm rectifier-inverter topology with PV modules connected directly on the dc-link. The common-arm is with line-frequency switching and synchronous to the input voltage, aiming for a lower switching loss and decoupling the control of rectifier and inverter portions. As a result, the rectifier and inverter portions can be controlled independently with the rectifier-arm and inverter-arm, respectively. For maximum power point tracking (MPFF) of the PV modules and balancing the power among utility, PV, and the load, a variable dc-link voltage is adopted and controlled by the rectifier-arm based on the MPPT control algorithm. The inverter-arm then regulates the load voltage with good regulation and low distortion. Due to large variation of the dc-link voltage, a feedforward plus feedback control technique with variable gain is developed to keep constant bandwidth of the current loop at any operation condition. Therefore, the performance of the rectifier and inverter portions can be ensured. A system containing a 2 kVA converter and a 1.2 kW PV module is set up, and some experimental results are provided for demonstrating the effectiveness of the proposed method.  相似文献   

19.
A new ac line conditioner is presented for high input power factor and clean ac output voltages for isolating the linear or nonlinear loads. A three-phase two-leg switching mode rectifier with neutral-point-clamped topology is proposed to draw the sinusoidal line currents from the ac mains. The carrier-based current controller is used in the inner control loop to track the line current commands with unity power factor. The dc bus voltage controller is adopted in the outer control loop to regulate the dc-link voltage. A voltage compensator is used to balance the neutral point voltage on the dc tank. A three-phase two-leg inverter with neutral-point-clamped topology is adopted in the system to provide the clean ac output voltages to the critical or sensitive loads. The carrier-based current control scheme is adopted to improve the instantaneous output voltages. Experimental results show the validity and effectiveness of the proposed control strategy.  相似文献   

20.
Evaluation of active hybrid fuel cell/battery power sources   总被引:1,自引:0,他引:1  
Hybrid fuel cell/battery power sources have potentially widespread uses in applications wherein the power demand is impulsive rather than constant. Interposing a dc/dc converter between a fuel cell and a battery can create two configurations of actively controlled hybrid fuel cell/battery power sources. Those two configurations are compared using both theory and experiment with special attention to the peak power enhancement, and power losses in the converter. Both of the defined configurations were built, using a 35 W polymer electrolyte membrane (PEM) fuel cell, an 8-cell lithium-ion battery pack, and a high-efficiency power converter. Both two configurations yielded a peak power output of 135 W, about 4 times as high as the fuel cell alone could supply, with only a slight (13%) increase of weight. The converter losses were quantitatively analyzed. Which of the two configurations yields a smaller loss depends on the load power demand characteristics including peak power and load duty ratio. The study results provide guidance for the design of hybrid sources according to the particular load power requirements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号