首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new class of AC/DC converter topologies (Type-1 converters) is described, suitable for use in an advanced single-phase sine-wave voltage, high-frequency power distribution system, of the type that was proposed for a 20 kHz Space Station primary electrical power distribution system. The converter comprises a transformer, a resonant network, a current controller, a diode rectifier, and an output filter. The input AC voltage source is converted into a sinusoidal current source using the resonant network. The output of this current source is rectified by the diode rectifier and is controlled by the current controller. The controlled rectified current is then filtered by the output filter to obtain a constant voltage across the load. Three distinct converter topologies, Type-1A, Type-1B, and Type 1-C, are described, and their performance characteristics are presented. All three types have a close-to-unity rated power factor (greater than 0.98), low total harmonic distortion in input current (less than 5%), and high conversion efficiency (greater than 96%)  相似文献   

2.
Battery charger design for the Columbus MTFF power system   总被引:1,自引:0,他引:1  
A novel pulsewidth-modulated (PWM) dc-dc converter topology is proposed for the battery charge regulator (BCR) of the Columbus Man-Tended Free-Flyer (MTFF) power system. The system is a regulated bus system. Bus voltage control is implemented at the input of the BCR. The use of a conventional buck topology with PWM conductance control at the input results in a second-order behavior. A study of new PWM dc-dc converter topologies has been made to attain a suitable topology. The proposed converter topology is designed and a breadboard including the control loop has been built and tested. The experimental results show that the converter operates according to the design constraints.  相似文献   

3.
Design optimization for asymmetrical ZVS-PWM zeta converter   总被引:1,自引:0,他引:1  
In this paper, a new soft-switching Zeta converter with an asymmetrical pulsewidth modulation (PWM) control is proposed. The proposed Zeta converter has the features of constant frequency operation, zero voltage switching (ZVS), and low voltage stress on the active switches. Moreover, it can achieve high power density, high efficiency, low switching loss, and low component count, which make converter operation at low to medium power level feasible. Operational principle of the Zeta converter is presented in detail, and a specific example is designed and implemented to verify its feasibility.  相似文献   

4.
A new dc-dc converter featuring a steep step-down of the input voltage is presented. It answers a typical need for on-board aeronautics modern power architectures: power supplies with a large conversion ratio able to deliver an output voltage of 1–1.2 V. The proposed structure is derived from a switched-capacitor circuit integrated with a buck converter; they share the same active switch. The proposed solution removes the electromagnetic interference (EMI) emission due to the large di/dt in the input current of the switched-capacitor power supplies. Compared with a quadratic buck converter, it presents a similar complexity, a smaller reduction in the line voltage at full load (but less conduction losses due to smaller input inductor current and capacitor voltage), lower voltage stresses on the transistor and diodes, lower current stresses in the diodes, and smaller size inductors. A similar structure using a buck-boost converter as the second stage is also presented. The experimental results confirm the theoretical developments.  相似文献   

5.
It is difficult to obtain a large input/output voltage ratio with a DC-DC converter, because the duty factor d may not reach very small values. For the same reason, it is difficult to obtain an output voltage that is adjustable in a large range. A DC-DC converter circuit is proposed that overcomes this limitation by performing a voltage ratio d2/(1-d) in the best operating mode. Circuit operation is analyzed, operating modes are evidenced, and the voltage ratio is deduced in each operating mode as a function of output current, duty factor, and circuit component values. Boundary conditions between different operating modes are obtained; consequently, it is concluded that these conditions do not occur for some operating modes. Component ratings are summarized, to facilitate circuit design. The buck-flyback DC-DC converter is very suitable for low-voltage (e.g. computer) power supplies and for power supplies with the output voltage (adjustable in a large range) supplied from the mains without a mains voltage transformer  相似文献   

6.
This paper presents an analysis and experimental results for a frequency-controlled series-resonant dc-dc converter that consists of a Class-D zero-voltage-switching (ZVS) series-resonant inverter and a center-tapped synchronous rectifier. If the dc output voltage is low, the efficiency of the converter is dominated by the efficiency of the rectifier. Low on-resistance metal-oxide-semiconductor field-effect transistors (MOSFETs) are used in the rectifier instead of diodes because the forward voltage drop across the rectifying device is low, resulting in a high efficiency. The dc output voltage is regulated against variations in the load resistance and the dc input voltage by varying the operating frequency. Experimental results are presented for a converter with a dc input voltage of 150 V, an output voltage of 5 V, and a dc load resistance ranging from 0.5 to 5.5 R. The measured efficiency was 86% for a 50 W output and 89% for a 25 W output. The theoretical results were in good agreement with the measured results.  相似文献   

7.
The voltage-current characteristic of solar cells that provide power for a spacecraft can vary over a wide range. For maximum power transfer from the solar cells to the battery system a power converter has to be designed that adjusts its input impedance to a value equal to the output impedance determined by the operating power characteristic of the solar cells. This paper discusses a circuit and calculations for a design to match this condition. The proposed power converter is simple, lightweight, and reliable and will be used in the Sunblazer satellite.  相似文献   

8.
Photovoltaic (PV) generators exhibit nonlinear v-i characteristics and maximum power (MP) points that vary with solar insulation. An intermediate converter can therefore increase efficiency by matching the PV system to the load and by operating the solar cell arrays (SCAs) at their maximum power point. An MP point tracking algorithm is developed using only SCA voltage information thus leading to current sensorless tracking control. The inadequacy of a boost converter for array voltage based MP point control is experimentally verified and an improved converter system is proposed. The proposed converter system results in low ripple content, which improves the array performance and hence a lower value of capacitance is sufficient on the solar array side. Simplified mathematical expressions for a PV source are derived. A signal flow graph is employed for modeling the converter system. Current sensorless peak power tracking effectiveness is demonstrated through simulation results. Experimental results are presented to validate the proposed method  相似文献   

9.
为了提高三相四开关变换器并网电能质量,提出一种适用于不平衡电网条件的有限控制集模型预测直接功率控制策略。分析三相四开关变换器的工作机制和电压矢量变化关系,并建立其功率预测模型。使用αβ静止坐标系下的电网电压以及其90°延迟信号计算功率补偿值,设计价值函数,选择最优电压矢量对应的开关状态。该控制策略无需传统的正负序分离控制及锁相环技术,易于实现。仿真和试验结果表明,在不平衡电网条件下,所提出的控制策略能够有效降低并网电流畸变,消除功率波动,提高并网电能质量。  相似文献   

10.
《中国航空学报》2023,36(7):420-429
In this paper, a fault-tolerance wide voltage conversion gain DC/DC converter for More Electric Aircraft (MEA) is proposed. The proposed converter consists of a basic Cuk converter module and n expandable units. By adjusting the operation state of the expandable units, the voltage conversion gain of the proposed converter could be regulated, which makes it available for wide voltage conversion applications. Especially, since mutual redundancy can be realized between the basic Cuk converter module and the expandable units, the converter can continuously work when an unpredictable fault occurs to the fault-tolerant parts of the proposed converter, which reflects the fault tolerance of the converter and significantly improves the reliability of the system. Moreover, the advantages of small input current ripple, automatic current sharing and low voltage stress are also integrated in this converter. The working principle and features of the proposed converter are mainly introduced, and an experimental prototype with 800 W output power has been manufactured to verify the practicability and availability of the proposed converter.  相似文献   

11.
The design concept for the traveling wave tube amplifier converter for possible use in the Thermoelectric Outer Planet Spacecraft (TOPS) is presented. An unusual combination of semiconductors and magnetics were utilized to achieve very stable voltage regulation on a number of separate outputs to satisfy the requirements of a high-power traveling wave tube (TWT), and at the same time operate at an efficiency of better than 90 percent from a 30-volt source. The circuitry consists of an output filter, an auxiliary Jensen oscillator driving a high-reactance transformer to provide current limiting to the heater, a variable time delay, a main Jensen oscillator driving the power transformer with a maximum step-up ratio of 120 to 1, and series transistorized post regulators to provide precise voltage adjustment and low output impedance. This paper discusses the design of the high-reactance transformer and the high step-up ratio transformer, as well as the high-voltage series regulators that are limited in range and operate at the top of the unregulated output voltage. Test data is presented, and details of current transients caused by charging the filter circuits, input current ripple, and output voltage ripples are considered. The circuit provides better than 0.5 percent regulation against load change, input voltage change, and over-operating temperature range of from -20 to + 80°C, with output ripple voltage of less than 2 volts peak-to-peak on top of the 3600-Vdc output. The measured efficiency was typically 87 percent. and recommendations are included to improve this to in excess of 90 percent.  相似文献   

12.
本文介绍了一种适用于无人机的专用电源系统的设计方案,该方案由永磁同步发电机和宽电压输入范围的电源变换/调节装置组成.该方案具有系统结构简单、可靠性高、电源品质高和转速范围宽的优点,并对电源系统进行了实验验证,实验结果和理论分析一致.  相似文献   

13.
The Fourier theory of jumps (FTJ) is demonstrated as an aid in deriving closed-form analytical equations for converter switching harmonics. The switching waveforms analyzed are the input current and output voltage and current of a three-phase, ac-dc, step-down, dead-band pulsewidth modulated (PWM), unity power factor converter. The input current closed-form harmonic equation is derived for two parallel-connected, interleaved-PWM converters supplying the same load and sharing a common input filter. The equations are compared with PSpiceTM simulations and practical results  相似文献   

14.
针对矩阵变换器电压传输比低和其励磁的双馈风力发电系统(DFIG)易受非正常输入波动影响的不足,提出了一种适用于DFIG励磁的Z-源稀疏矩阵变换器系统。利用Z-源的升压特性来提高电压传输比,检测电容电压实现对直通因子的自动调节,从而实现对网侧波动的自动抑制。建立了系统数学模型,推导了DFIG系统定子磁场定向矢量控制策略表达式,搭建试验样机对所提方案进行试验验证,在亚同步、同步、超同步三种发电状态下的波形和并网试验结果验证了方案的可行和有效性。  相似文献   

15.
The design and implementation of a switching regulator incorporating a high-frequency series-resonant converter and a combined FM and on-off feedback control is presented. The combined FM and on-off control results in a better conversion efficiency and a wider range of operational input voltage and output current. A 22.5 V, 50 W experimental regulator has been built to demonstrate the practicality of the circuit and its high efficiency, typically 92 to 96 percent, depending on the input and loading conditions.  相似文献   

16.
A new soft-switched ac-dc single-stage pulse width modulation (PWM) full-bridge converter is proposed. The converter operates with zero-voltage switching (ZVS), fixed switching frequency, and with a continuous input current that is sinusoidal and in phase with the input voltage. This is in contrast with other ac-dc single-stage PWM full-bridge converters that are either resonant converters operating with variable switching frequency control and high conduction losses, converters whose switches cannot operate with ZVS, or converters that cannot perform power factor correction (PFC) unless the input current is discontinuous. All converter switches operate with soft-switching due to a simple auxiliary circuit that is used for only a small fraction of the switching cycle. The operation of the converter is explained and analyzed, guidelines for the design of the converter are given, and its feasibility is shown with results obtained from an experimental prototype.  相似文献   

17.
A review of common switching techniques for dc/dc power conversion is presented. The evolution of the forward converter is discussed, leading naturally to the introduction of the double forward converter. Technical details for a series of radiation-hardened converters are then provided. This series was designed for space power management and distribution (PMAD) applications. The successful development of the PMAD converter demonstrated the viability of high voltage bus.  相似文献   

18.
采用基于NCP1200的电流型控制,设计并研制了应用于高速磁悬浮电动机变频器的开关电源,该电源自适应输入电压波动,并自动调节PWM占空比以保证输出电压恒定.实验结果表明,该电源具有输出纹波小、效率高、EMI小、电压调整率和稳压性能好等优点,可用作变频器控制电路的电源.  相似文献   

19.
Because of their reduced switching losses, allowing a higher operating frequency, dc-to-dc resonant converters have been used extensively in the design of smaller size and lighter weight power supplies. The steady state and dynamic behavior of both the conventional series and parallel resonant converters have been thoroughly analyzed and small-signal models around given nominal operating points have been obtained. These models have been used in the past to design controllers that attempted to keep the output voltage constant in the presence of input perturbations. However, these controllers did not take into account either load or components variations, and this could lead to instability in the face of component or load changes. Moreover, prediction of the frequency range for stability was done a posteriori, either experimentally or by a trial and error approach In this paper we use μ-synthesis to design a robust controller for a series resonant converter (SRC). In addition to robust stability the design objectives include rejection of disturbances at the converter input while keeping the control input and the settling time within values compatible with a practical implementation  相似文献   

20.
A single-phase power factor preregulator to improve the power quality in the input side of an ac/dc/ac converter and a random pulsewidth modulation (PWM) to reduce the emitted noise energy and the mechanical vibration for an induction motor drive is proposed. The hysteresis current control (HCC) technique for a voltage source switching mode rectifier (SMR) is adopted. A control scheme is presented such that the line current is driven to follow the reference current which is derived from the dc bus voltage regulator and the output power estimator. A random pulse position technique for a three-phase voltage source inverter system to reduce the noise energy and resonant vibration from ac machine drive is described. By randomly varying the instantaneous pulse position in each switching frequency, the frequency distribution of harmonics is spread in a wide frequency range which results in reduction of torque pulsations in the ac motor drive systems. To investigate the proposed control scheme, experimental tests based on a laboratory prototype were implemented to show the nearly unity power factor at the SMR and reduce the noise energy concentrated at the specific tones  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号