首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
An analysis of the application of pulse-compression techniques in optical radar systems is presented. The particular case of pseudorandom on-off amplitude coding is chosen for ease of analysis. The roles of the siqnal and photodetector properties and the processing method are examined. The qualitative relationship between the concepts of coherent and incoherent integration in microwave radar and linear and nonlinear processing in optical radar is demonstrated, thus validating the application of pulse-compression techniques with optical signals. Finally, an experimental simulation of an optical rangefinder has been constructed to illustrate various findings of the analysis.  相似文献   

2.
3.
Netted radar sensing   总被引:1,自引:0,他引:1  
Future radar applications are beginning to stretch monostatic radar systems beyond their fundamental sensitivity and information limits. Networks of smaller radar systems can offer a route to overcome these limitations; for example, networks of radar sensors can counter stealth technology whilst simultaneously providing additional information for improved target classification. More generally, multiple independent sensors can provide an energetically more efficient collector of radar scatter. The relative merits of non-coherent and coherent networks are introduced and the balance between increased performance, complexity, and cost is discussed.  相似文献   

4.
分布式相参雷达因一改传统大口径雷达机动性差、造价昂贵等缺陷,故受到了雷达界广泛关注,同时,它也是下一代雷达发展的方向.分析了分布式雷达相参发射的基本原理,得到了相参合成的条件,采用电磁软件仿真了分布式相参雷达辐射场的特性.通过仿真发现:短基线相参雷达的相参合成区域呈现条纹状,在主波束范围内场强同样呈现条纹状;长基线相参...  相似文献   

5.
Selected new methods and applications of non-linear apodization for irregularly-shaped and parse coherent apertures and arrays are presented. The benefits include unproved impulse response performance, i.e., reduced peak sidelobes and integrated sidelobe power, along with improved mainlobe resolution, compared to classic windowing techniques. Nonlinear apodization (NLA) techniques can also serve as powerful engines for effective superresolution and bandwidth extrapolation of coherent data for filling sparse apertures. The sparse aperture filling property of superresolution algorithms for radar data forms the basis for a new concept which is introduced here: synthetic multiple aperture radar technology (SMART). Increased swath and/or reduced antenna size are some of the benefits postulated for SMART applied to synthetic aperture radar (SAR) systems. The benefits of these new methods and applications for nonlinear apodization are then demonstrated for two specific applications: 1) sidelobe control for Y-type synthetic aperture radiometers, such as the European Soil Moisture and Ocean Salinity (SMOS) system (Kerr et al.) and JPL's proposed GeoSTAR (Lambrigsten) concept; and, 2) filling of sparse synthetic aperture radar data by exploiting the bandwidth extrapolation properties of nonlinear apodization based superresolution techniques. The methods that have been developed and demonstrated herein have potential application to a wide range of passive and active microwave remote sensing and radar systems.  相似文献   

6.
Two classes of coherent radar types are analyzed to ascertain whether any significant advantages exist for a given system. The classes compared are those coherent radars which transmit a phasecoherent pulse-to-pulse RF carrier as opposed to those which transmit randomly phased RF carriers but store the coherent information at the radar for Doppler extraction. Rigorous new analytical development is avoided in favor of examination of the considerable existing literature, examination of practical limitations, and synthesis of generic solutions from key concepts. Examination is made of coherent radar classes from the viewpoints of reconnaissance ance and intelligence measurement, new radar design and devlopment, and electronic countermeasures vulnerability. The conclusion that the classes of coherent radars examined have a priori and a posteriori equivalent performance has significant implications not published in any reference source.  相似文献   

7.
The optimum design of synthetic aperture radar (SAR) systems intended to classify randomly reflecting areas, such as agricultural fields, characterized by a reflectivity density spectral density is studied. Assuming areas of known shape and location, the binary case, and a certain Gaussian signal field property, and ignoring interfield interference, the problem solution is given. The optimum processor includes conventional matched filter processing, but is nonlinear; a coherent optical system realization is outlined. The performance is approximated using a x2 assumption and bounded by the Cernov bound. A fundamental design problem involves the system bandwidth analogously, in a special case, as in diversity communication systems; a solution is given based on the Cernov bound. A set of summary design curves is given and exemplified by a satellite SAR system design. Also discussed is the measurement of reflectivity spectral density amplitude with imaging sidelooking (synthetic or ?brute-force?) radars and the maximum likelihood estimator's accuracy and realization with a coherent optical system. It is also shown that a CW modulation is useable if the random reflectivity is, effectively, isotropic. Finally, the reflectivity density spectral density amplitude, when constant over the spatial bandpass of the measuring system, is related to the scattering cross-section density commonly measured.  相似文献   

8.
The authors assess the state of the art, focusing on their own contributions. Covered areas are the electromagnetic inverse problem in radar polarimetry, coherent polarization radar theory, partially coherent polarization radar theory, vector (polarization) inverse scattering approaches, the polarimetric matched filter approach, polarimetric Doppler radar applications in meteorology and oceanography, and image fidelity in microwave vector diffraction tomographic imaging  相似文献   

9.
相参雷达典型干扰信号产生及关键技术   总被引:1,自引:0,他引:1       下载免费PDF全文
介绍了一种基于DRFM的相参雷达典型干扰样式信号产生方法,并对其关键技术进行了研究。该干扰信号能够携带雷达发射信号的相位等细微特征信息,可以用于在实验室条件下对相参雷达进行抗干扰性能测试。  相似文献   

10.
The nature of physical phenomena is such that scattering from portions of an object, a number of objects, or clutter, is not completely unrelated; the underlying environment causes some degree of order in the phenomenon. Radar partial coherence theory describes a structure for the general target, or clutter, and its relationship to radar cross section, waveform coding, and the radar output signal. The clutter ambiguity function is introduced for extended bodies and embraces the (Woodward) ambiguity function for a point target. Due to nonlinear effects caused by partial coherence within the general target, radar signals and targets are formulated in terms of mutual coherence functions. The basic quantities describing the radar output are 1) the radar mutual coherence function (formulated in terms of the radar waveform) and 2) the target mutual coherence function which depends upon target properties, physical environment, and viewing aspect. Random noise (independent point scatterers) and partially coherent portions of reflecting bodies are made accountable in the theory. Partial coherence effects are treated as patches of reflected energy: self-coherent energy patches plus mutually coherent energy among the patches.  相似文献   

11.
Electromagnetic signals which propagate through strongly disturbed regions of the ionosphere can experience angular scattering, causing appreciable amplitude and phase scintillation and angle-of-arrival fluctuations. The performance of a space based radar (SBR) subject to degradation due to signal propagation through a highly disturbed ionospheric channel is considered here. Pertinent characteristics of the disturbed channel and the received radar signal are described. The effects of the propagation path are investigated and the differences between monostatic and bistatic operation are presented. Results are presented which show the effect of severe scintillation on the coherent target detection performance of an SBR. It is shown that coherent detection performance can be seriously degraded in a scintillation environment if scintillation effects are not considered in the radar design.  相似文献   

12.
We report the design of optical fiber asynchronous code-division multiple-access (CDMA) systems using fully optical orthogonal codes (FOOCs), which can be employed to support future airborne real-time communication services. The use of incoherent optical CDMA (IO-CDMA) can result in lower complexity and more reliable implementation than that of the coherent version, so this makes IO-CDMA more adequate for operation in the severe aircraft environment. When FOOCs are used in the IO-CDMA systems, the peaks of all the cross-correlation functions and all the sidelobes of any auto-correlation function are then limited to “1” (i.e., the minimum correlation constraint for incoherent optical processing) in fully asynchronous transmissions. Moreover, proposed systems can effectively support multi-rate and variable-rate data communications with no violation of the minimum correlation constraint and no change of IO-CDMA encoders/decoders. This characteristic can be used to improve the system flexibility and availability. A basic experiment is also demonstrated to verify the characteristics of FOOCs  相似文献   

13.
通过分析中高轨目标雷达回波信号特性,给出一种基于空间目标动力学约束的回波信号相参积累方法,介绍了信号积累模式下中高轨道目标的参数测量方法。通过对国内某型号雷达进行中高轨目标探测支路改造及相关试验,获取试验数据并对其进行分析,验证了原理的正确性和方法的可行性。  相似文献   

14.
The loss in output signal-to-noise ratio (SNR) due to amplitude limiting is obtained for a radar circuit consisting of a bandpass limiter, coherent demodulator, matched filter, and moving-target-indicator (MTI) filter. The circuit is used in scanning MTI radars. The tandem connection of the limiter and coherent demodulator is a model for the saturation of the intermediate-frequency (IF) demodulator of an MTI radar. Results on special functions are used to obtain simple formulas for the loss in output SNR relative to a linear IF demodulator when the input SNR is less than -15 dB and the number of hits per 3-dB beamwidth exceeds 15.  相似文献   

15.
Electrooptical systems exist which can make use of the available bandwidth and directivity at optical frequencies without utilizing the coherence aspects of lasers. Development of a sensitive, very highspeed (microwave response) photoelectric detector which can function as a high-gain microwave amplifier and mixer is described. Sysyems are described for radar, communications, and reconnaissance purposes. Basic noise considerations are shown. CW and FM-CW optical range and range rate tracking systems are described in which the required detection bandwidth is not a direct function of the range resolution, allowing highly accurate range and range rate determination at low signal levels. Communication systems utilizing noncoherent carriers, microwave subcarriers, and the dynamic crossed field electron multiplier as the detector-amplifier-mixer are described.  相似文献   

16.
The objective of this primarily tutorial item is to describe a general model for the observable data and the appropriate data processing involved in sensing rigid target fields with coherent radars. Any number of radars may be involved, and the scene and each radar may be in any kind of motion-with no restrictions on motion through resolution cells during the coherent processing time of the radars. The motions are assumed to be known. To some extent motion parameters can be estimated from the radar data, e.g., by adaptive parameter adjustments in the data processing; however, this subject is beyond the scope of this discussion. In large measure, the analysis in this item highlights the central conceptual result obtained by J.L. Walker as described in [1] -a major work in radar theory.  相似文献   

17.
CFAR behavior of adaptive detectors: an experimental analysis   总被引:1,自引:0,他引:1  
We conduct an experimental analysis for assessing the constant false alarm rate (CFAR) behavior of four coherent adaptive radar detectors in the presence of experimentally measured clutter data. To this end we exploit several data files containing both land, lake, and mixed land and sea clutter, collected by two radar systems (the MIT Lincoln Laboratory Phase-One radar and the McMaster IPIX radar) at different polarizations, range resolutions, and frequency bands. The results show that all the receivers, in the presence of real data, don't respect their nominal probability of false alarm (P/sub fa/), namely they exhibit a false alarm rate higher than the value preassigned at the design stage. Nevertheless one of them, the recursive persymmetric adaptive normalized matched filter (RP-ANMF) is very robust, in the sense that it presents an acceptable displacement from the nominal P/sub fa/, in correspondence of all the analyzed scenarios.  相似文献   

18.
The optimum coherent radar receiver configuration is derived for a continuously scanning antenna on the basis of maximizing the available energy for a given processor complexity. Included in the analysis are the length of the coherent dwell, the size of the discrete Fourier transform and the degree of weighting used for Doppler filtering, and the use of overlapped processing windows. Gaussian shapes for the processing window and antenna mainbeam are assumed in order to make the analysis tractable  相似文献   

19.
The radar use of coherent burst waveforms to obtain clutter suppression is summarized and problems arising from the high power implementation of such waveforms are discussed. These problems arise from the nonlinear nature of the typical high power radar transmitter and result in loss of subpulse-to-subpulse amplitude and phase accuracies, causing clutter suppression degradation. adaptive control loop used to measure transmission errors and provide continuous updating to minimize such errors is proposed. Residual transmission errors resulting via use of the control loop are calculated and shown to have an insignificant effect upon the clutter suppression properties of the coherent waveform. Experimental verification of control loop performance is presented.  相似文献   

20.
Radar systems require transmission of very high purity signals. Photonics is now mature enough to achieve analog transmission with very low noise, strong immunity, and wide-bandwidth even in harsh environments. We present our recent developments of optimized optical links dedicated to radar and multifunction systems  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号