首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 403 毫秒
1.
Multifrequency Imaging of Radar Turntable Data   总被引:1,自引:0,他引:1  
In recent years synthetic-aperture radars (SAR) have proven to be very useful two-dimensional imaging tools in various fields. Based on the synthetic-aperture concepts, different imaging modes are possibe with various operating characteristics. We describe a special case where circular-projection radar data are coherently processed to yield both azimuth and range resoultion. Experiments are performed using data obtained from the radar target scatter site (RAT SCAT) radar cross-section facility. Fairly good results are obtained which illustrate the versatility of coherent syntheticaperture processing of pulse-to-pulse high-range-resolution radar returns. A discrete multifrequency stepped and pulsed waveform is the basic transmitted signal from which range-Doppler images are generated. The RAT SCAT turntable facility allows interesting model targets to be illuminated from which radar images can then be computed. One such application of the processing is described.  相似文献   

2.
通过分析中高轨目标雷达回波信号特性,给出一种基于空间目标动力学约束的回波信号相参积累方法,介绍了信号积累模式下中高轨道目标的参数测量方法。通过对国内某型号雷达进行中高轨目标探测支路改造及相关试验,获取试验数据并对其进行分析,验证了原理的正确性和方法的可行性。  相似文献   

3.
Air surveillance radars for this decade will be required to provide reliable target location and trajectory information in height as well as the conventional geographical coordinates. These threedimensional radars will perform this task in spite of adverse environmental conditions such as ground, airborne clutter, and electromagnetic interference. The use of powerful false-alarm control processing allows automatic target detection and remoting of target information without overloading central processing capabilities. The technological evolution of the past decade has allowed sophisticated analysis, antenna/receiver/transmitter design, and signal/data processing techniques to be applied to the next generation of practical production radar systems. These radars will meet more severe performance requirements and will be significantly improved in terms of reliability, maintainability, and life cycle cost considerations. A candidate radar to fulfill the air surveillance role of this decade is the Series 320 radar manufactured by ITT Gilfillan.  相似文献   

4.
This paper describes the development of a high-power, coherent radar system at W-band and discusses potential applications of radars with this new capability. Previous radars in this frequency band were limited by available power-amplifier technology to about 500 W of average power; WARLOC radar represents an increase in power, by 20 times, over previous coherent radars at 94 GHz. This performance improvement is possible due to the development of a gyroklystron amplifier specifically for this and future radars in this frequency band. The gyroklystron amplifier tubes deliver 100 kW peak power and 10 kW of average power at a center frequency of approximately 94 GHz. Other novel features of this radar include the use of highly overmoded waveguides and rotary joints for the transmission of power from the final power amplifier (FPA) to the antenna, and a high-power quasi-optical duplexer. The system uses a relatively large 1.8 m diameter (580-wavelength) Cassegrain antenna, which required the development of an antenna with an rms surface accuracy of 0.0025 in, to obtain long-range detection and identification of small objects. Test data show an antenna gain of 62.5 dB, confirming that the needed surface accuracy was achieved. Two mobile shelters house the radar system, permitting relocation to various test sites. WARLOC is presently operational at the Naval Research Laboratory's Chesapeake Bay Detachment facility, Maryland. It is being employed in radar imaging of airborne and surface objects, and in the scientific study of propagation effects and atmospheric physics phenomena.  相似文献   

5.
基于傅里叶变换的航迹对准关联算法   总被引:7,自引:2,他引:5  
何友  宋强  熊伟 《航空学报》2010,31(2):356-362
研究了在组网雷达存在系统误差情况下的目标航迹关联问题,理论分析了雷达系统误差对目标航迹的影响,并将该影响表示为目标航迹的旋转和平移量。在此基础上,提出了一种基于傅里叶变换的系统误差配准前航迹对准关联算法,该算法将组网雷达的航迹数据看做为一种整体信息,采用傅里叶变换理论来估计和补偿组网雷达目标航迹数据到融合中心航迹数据的相对旋转量和平移量,将雷达网中雷达上报的目标航迹数据对准到融合中心,从而不依赖于估计雷达网系统误差,实现了误差配准前的航迹准确关联,能够为后端的系统误差配准提供可靠的关联目标航迹数据。  相似文献   

6.
Two classes of coherent radar types are analyzed to ascertain whether any significant advantages exist for a given system. The classes compared are those coherent radars which transmit a phasecoherent pulse-to-pulse RF carrier as opposed to those which transmit randomly phased RF carriers but store the coherent information at the radar for Doppler extraction. Rigorous new analytical development is avoided in favor of examination of the considerable existing literature, examination of practical limitations, and synthesis of generic solutions from key concepts. Examination is made of coherent radar classes from the viewpoints of reconnaissance ance and intelligence measurement, new radar design and devlopment, and electronic countermeasures vulnerability. The conclusion that the classes of coherent radars examined have a priori and a posteriori equivalent performance has significant implications not published in any reference source.  相似文献   

7.
Array errors are inherent in a realistic phased array radar system. The influence of array errors on the clutter degrees of freedom and the clutter subspace in an airborne phased array radar is analyzed. Based on the presented theoretic results, a method of short-time processing followed by coherent integration is proposed for clutter suppression in airborne phased array radars. It can approximate the two-dimensional optimal processor well even in the presence of array errors, clutter fluctuations and aircraft drift, with a considerable saving in computations  相似文献   

8.
Radar target classification of commercial aircraft   总被引:1,自引:0,他引:1  
With the increased availability of coherent wideband radars there has been a renewed interest in radar target recognition. A large bandwidth gives high resolution in range which means target discrimination may be possible. Coherence makes cross-range resolution and radar images possible. Some of the problems of classifying high resolution range profiles (HRRPs) are examined and simple preprocessing techniques which may aid subsequent target classification are investigated. These techniques are applied to HRRP data acquired at a local airport using the Microwave Radar Division (MRD) mobile radar facility It is found that Boeing 727 and Boeing 737 aircraft can be reliably distinguished over a range of aspect angles. This augers well for future target classification studies using HRRPs  相似文献   

9.
Target-Motion-Induced Radar Imaging   总被引:14,自引:0,他引:14  
Imaging from ground-based (stationary) radars of moving targets is often possible by utilizing a "synthetic aperture" developed from the target motion itself. The theory and experimental results associated with such processing are addressed. An aircraft is imaged from both a straight flight and a turn with recognizable results. Analysis shows that two-phase components exist in the radar return, one being gross velocity induced, the other being interscatterer interference within the target itself. The former phase must be removed prior to imaging and techniques are developed for this task. Preprocessing, range curvature, range alignment, motion compensation, and presumming are all addressed prior to presenting the experimental results. Coherence processing intervals, range collapsing, and range realignment are all examined during the processing aspects of the paper.  相似文献   

10.
Ship navigation through ice-infested waters is a problem of deep concern to the Canadian shipping and exploration industry. Conventional marine radars have difficulty detecting small pieces of glacial ice called growlers which are very hazardous to vessels if struck. In an effort to improve detection performance, X-band radar measurements were collected and analyzed to determine the characteristics of clutter and growler returns that could lead to their separability. These analyses suggested that coherent medium dwell-time processing (i.e., integration times of a fraction of a second) could provide improvement In growler detectability over conventional methods; and long dwell-time processing (i.e., integration times on the order of seconds) could provide even further improvement. We report on the performance of two new coherent, medium dwell-time detectors. A third detector which is representative of conventional marine radar serves as a basis for comparison Although significant improvement in growler detectability is achieved, the two coherent detectors still fall short of operational requirements. This leads to the development of a long dwell-time detector which provides considerably better performance. Empirical results indicate that this new detector could well satisfy stringent operational requirements  相似文献   

11.
We present the development and implementation of a multisensor-multitarget tracking algorithm for large scale air traffic surveillance based on interacting multiple model (IMM) state estimation combined with a 2-dimensional assignment for data association. The algorithm can be used to track a large number of targets from measurements obtained with a large number of radars. The use of the algorithm is illustrated on measurements obtained from 5 FAA radars, which are asynchronous, heterogeneous, and geographically distributed over a large area. Both secondary radar data (beacon returns from cooperative targets) as well as primary radar data (skin returns from noncooperative targets) are used. The target IDs from the beacon returns are not used in the data association. The surveillance region includes about 800 targets that exhibit different types of motion. The performance of an IMM estimator with linear motion models is compared with that of the Kalman filter (KF). A number of performance measures that can be used on real data without knowledge of the ground truth are presented for this purpose. It is shown that the IMM estimator performs better than the KF. The advantage of fusing multisensor data is quantified. It is also shown that the computational requirements in the multisensor case are lower than in single sensor case, Finally, an IMM estimator with a nonlinear motion model (coordinated turn) is shown to further improve the performance during the maneuvering periods over the IMM with linear models  相似文献   

12.
In radars that achieve a high subclutter visibility by coherent processing over several pulses, a serious problem appears in the form of blind Dopplers, or ?speeds,? at which target detection is impossible. Of the possible methods of eliminating these blind speeds, the most basic one that is employed when the performance requirements are high involves the use of several PRF's. These PRF's are chosen so that coverage is obtained at any Doppler with at least one PRF. The problem faced by the radar designer is to select the set of PRF's and the pulse numbers for each PRF so that the search frame time is minimized. This paper evolves a systematic method for the design of the blind-speed elimination scheme. A formalized approach is offered that shows the possible combinations of wavelength, PRF, and pulse number and the tradeoffs involved, without introducing the confusion ordinarily associated with multiparameter choices.  相似文献   

13.
Space-time adaptive processing (STAP) is an effective method adopted in airborne radar to suppress ground clutter. Multiple-input multiple-output (MIMO) radar is a new radar concept and has superiority over conventional radars. Recent proposals have been applying STAP in MIMO configuration to the improvement of the performance of conventional radars. As waveforms transmitted by MIMO radar can be correlated or uncorrelated with each other, this article develops a unified signal model incorporating waveforms for STAP in MIMO radar with waveform diversity. Through this framework, STAP performances are expressed as functions of the waveform covariance matrix (WCM). Then, effects of waveforms can be investigated. The sensitivity, i.e., the maximum range detectable, is shown to be proportional to the maximum eigenvalue of WCM. Both theoretical studies and numerical simulation examples illustrate the waveform effects on the sensitivity of MIMO STAP radar, based on which we can make better trade-off between waveforms to achieve optimal system performance.  相似文献   

14.
The history of development of automotive radars in different countries since 1972 is described using a short comparison of radar types. The authors indicate the planning of introduction of car radars in the near future according to information supplied by car companies. The purpose of the development of an automotive radar was to test different signal processing procedures both for distance and Doppler evaluation and also for a digital wavefront reconstruction to find out the angle position of a target. The block diagram, the main properties, the technical data of the radar system, the used antennas and the multiplexing of transmitting antennas is described. Finally some experimental results have been obtained under real traffic conditions  相似文献   

15.
A discussion of various types of x-band airborne radars is presented together with their systematic development through the years to the present time. Starting with simple, low pulse-repetition frequency (PRF) radars for measuring radar-target range, airborne radar development proceeded with more sophisticated high PRF Doppler radars where radar-target range and range rate were measured simultaneously. The use of Doppler (frequency) in signal processing allowed the separation of moving from nonmoving targets (ground), enabling the detection of moving targets in the presence of ground clutter. More recent developments in waveform generation and selection has resulted in the development of medium PRF radars, whereby a greater degree of tactical flexibility in target detection is achieved by combining the desirable features of both low and high PRF radars. Part of the available literature gives an overview, together with a specific example of the design and performance of an airborne medium PRF radar. Here, however, the systematic evolution of these radars is emphasized and the necessary theoretical background is developed for their performance calculations. Modern day airborne radars may be equipped with all three modes of operation, low, medium, and high PRF, allowing the operator to utilize the mode best suited for the tactical encounter. Low PRF and high PRF radars have been described elsewhere and are given here primarily for the sake of completeness and for the necessary background for developing medium PRF radar equations. They are also needed for developing the reasons why medium PRF radars came into being.  相似文献   

16.
In synthetic aperture radar a large linear phased array is formed from the rapid movement of a single element through each position in the array. Storage and coherent combining of the successive radar echoes are central to the array-forming process. Optical processing is the most common technique because of the efficiency with which Fourier transformation may be accomplished with simple optics. Real-time operation, however, requires all-electronic processing, which is difficult to accomplish because of the huge quantity of data to be manipulated. Dynamic range compression by hard limiting may ease the problem by reducing the number of bits per frame. The effects of hard limiting are analyzed in this paper. It is shown that large targets simultaneously illuminated by the radar antenna will produce image targets or ghosts displaced in angle. Statistically homogeneous clutter will "linearize" the hard-limited receiver and suppress the ghosts without loss in contrast, as does thermal noise if it is larger than the target echoes. Pulse compression reduces the probability of images from prominent targets. Judicious choice of the pulse-compression waveform is a powerful tool for destroying coherent buildup of images from all large targets not in the same range resolution cell. Linear FM, the most common choice, unfortunately does not exhibit this desirable property.  相似文献   

17.
Adaptive beamforming is used to enhance the detection of target echoes received by high frequency (HF) surface wave (HFSW) over-the-horizon (OTH) radars in the presence of spatially structured interference. External interference from natural and man-made sources typically masks the entire range-Doppler search space and is characterized by a spatial covariance matrix that is time-varying or nonstationary over the coherent processing interval (CPI). Adaptive beamformers that update the spatial filtering weight vector within the CPI are likely to suppress such interference most effectively, but the intra-CPI antenna pattern fluctuations result in temporal decorrelation of the clutter which severely degrades subclutter visibility after Doppler processing. A robust adaptive beamformer that effectively suppresses spatially nonstationary interference without degrading subclutter visibility is proposed here. The proposed algorithm is computationally efficient and suitable for practical implementation. Its operational performance is evaluated using experimental data recorded by the Iluka HFSW OTH radar, located near Darwin in far north Australia.  相似文献   

18.
Modern radar design has benefited from the evolution of specialized digital processing, allowing high resolution ground mapping, target identification, and target tracking under many conditions. Air-to-air interception makes use of complex decision processes to select from many modes that depend on the clutter backgrounds and flight profiles. Today's multimode radars provide this information for each task while minimizing distractions. Fire control radars support a wide selection of weapons, including cannons and guided missiles. This is possible because of advanced digital processing. In the interval since WW II, radar design evolved from vacuum tubes to semiconductors and then to massively integrated circuits. Computers specialized for fast Fourier transforms (FFTs) have revolutionized radar data processing. System reliability has improved from a few hours to hundreds of hours. Effective built-in test informs ground maintenance personnel of problems for easy maintenance and low failure rates reduce or eliminate field maintenance benches at forward locations. Airborne surveillance radars, such as AW ACS Joint Stars have changed the nature of warfare. Commanders have virtually full view of enemy and friendly forces. Radars, in combination with other remote sensors, provide precise weapon delivery, reducing collateral damage and making all weapons more effective  相似文献   

19.
Recent developments in airborne Doppler and ground mapping navigation radars and ground and satellite based radio systems are described. Simultaneous lobing and slope tracking techniques can remove the well-known Doppler sea bias error in fast and slowly moving vehicles. Doppler velocity information can be extracted from coherent forward-looking mapping radars, and high position fixing accuracy can be achieved by synthetic aperture radars. In radio navigation systems, such as Loran, Omega, and satellite systems, direct-ranging and differential techniques greatly reduce the geometric dilution and propagation effects which have plagued conventional radio navigation systems. The advantages gained by mixing of the data from these and other navigation sensors in a digital multisensor system are discussed and approaches for processing these data are suggested.  相似文献   

20.
The ELDORA/ASTRAIA airborne Doppler weather radar was recently placed in service by US and French atmospheric sciences research laboratories. The ELDORA/ASTRAIA radar is designed to provide high resolution measurements of the air motion and rainfall characteristics of atmospheric storms which are too large, remote or fast-moving to be adequately observed by ground-based radars. This paper discusses the measurement requirements and the design goals of the radar and presents sample measurements from a recent weather research field program  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号