首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
GPS code and carrier multipath mitigation using a multiantennasystem   总被引:1,自引:0,他引:1  
Multipath is a major source of error in high precision Global Positioning System (GPS) static and kinematic differential positioning. Multipath accounts for most of the total error budget in carrier phase measurements in a spacecraft attitude determination system. It is a major concern in reference stations, such as in Local Area Augmentation Systems (LAAS), whereby corrections generated by a reference station, which are based on multipath corrupted measurements, can significantly influence the position accuracy of differential users. Code range, carrier phase, and signal-to-noise (SNR) measurements are all affected by multipath, and the effect is spatially correlated within a small area. In order to estimate and remove code and carrier phase multipath, a system comprising a cluster of five GPS receivers and antennas is used at a reference station location. The spatial correlation of the receiver data, and the known geometry among the antennas, are exploited to estimate multipath for each satellite in each antenna in the system. Generic receiver code and carrier tracking loop discriminator functions are analyzed, and relationships between receiver data, such as code range, carrier phase, and SNR measurements, are formulated and related to various multipath parameters. A Kalman filter is described which uses a combination of the available information from the antennas (receivers) in the multiantenna cluster to estimate various multipath parameters. From the multipath parameters, the code range and carrier phase multipath is estimated and compensated. The technique is first tested on simulated data in a controlled multipath environment. Results are then presented using field data and show a significant reduction in multipath error  相似文献   

2.
Adaptive SNR-based carrier phase multipath mitigation technique   总被引:3,自引:0,他引:3  
An improved technique that mitigates specular multipath in Global Positioning System (GPS) differential carrier phase measurements is described. It adaptively estimates the spectral parameters (frequency, amplitude, phase offset) of multipath in the associated signal-to-noise ratio (SNR), and then constructs a profile of the multipath error in the carrier phase. A multipath correction is subsequently made by subtracting the profile from the actual phase measurement data. The technique is demonstrated on ground based experimental data, as well as flight data from the atmospheric research satellite CRISTA-SPAS. Ground experiments were conducted on static platforms in severe multipath environments. Multipath was deliberately introduced by either strategic placement of reflectors or electronic injection. This allowed for some control over the strength and frequency of the multipath. Averaging the results from 43 ground and 18 flight data sets, the differential carrier phase multipath was reduced by 47%. The complete results for both ground and flight tests are presented and are accompanied by discussions of individual cases  相似文献   

3.
Multipath-adaptive GPS/INS receiver   总被引:2,自引:0,他引:2  
Multipath interference is one of the contributing sources of errors in precise global positioning system (GPS) position determination. This paper identifies key parameters of a multipath signal, focusing on estimating them accurately in order to mitigate multipath effects. Multiple model adaptive estimation (MMAE) techniques are applied to an inertial navigation system (INS)-coupled GPS receiver, based on a federated (distributed) Kalman filter design, to estimate the desired multipath parameters. The system configuration is one in which a GPS receiver and an INS are integrated together at the level of the in-phase and quadrature phase (I and Q) signals, rather than at the level of pseudo-range signals or navigation solutions. The system model of the MMAE is presented and the elemental Kalman filter design is examined. Different parameter search spaces are examined for accurate multipath parameter identification. The resulting GPS/INS receiver designs are validated through computer simulation of a user receiving signals from GPS satellites with multipath signal interference present The designed adaptive receiver provides pseudo-range estimates that are corrected for the effects of multipath interference, resulting in an integrated system that performs well with or without multipath interference present.  相似文献   

4.
Aiming at mitigating multipath effect in dynamic global positioning system (GPS) satellite navigation applications, an approach based on channel blind equalization and real-time recursive least square (RLS) algorithm is proposed, which is an application of the wireless communication channel equalization theory to GPS receiver tracking loops. The blind equalization mechanism builds upon the detection of the correlation distortion due to multipath channels; therefore an increase in the number of correlator channels is required compared with conventional GPS receivers. An adaptive estimator based on the real-time RLS algorithm is designed for dynamic estimation of multipath channel response. Then, the code and carrier phase receiver tracking errors are compensated by removing the estimated multipath components from the correlators’ outputs. To demonstrate the capabilities of the proposed approach, this technique is integrated into a GPS software receiver connected to a navigation satellite signal simulator, thus simulations under controlled dynamic multipath scenarios can be carried out. Simulation results show that in a dynamic and fairly severe multipath environment, the proposed approach achieves simultaneously instantaneous accurate multipath channel estimation and significant multipath tracking errors reduction in both code delay and carrier phase.  相似文献   

5.
姚彦鑫  杨东凯  张其善 《航空学报》2010,31(10):2004-2009
 研究全球定位系统(GPS)多径信号估计的问题。通过分析自适应滤波器的原理,建立了数字中频信号处理的数学模型,提出一种用自适应滤波实现GPS多径幅度、码相位和载波相位估计的方法。该方法采用不同延迟的伪随机序列对信号进行解扩、解调和累加,得到了作为期望信号的系列自适应滤波相关值。对该方法与其他3种方法进行了理论上的分析比较,得出本方法具有信噪比高、自适应滤波性能好、带有码相位信息和不存在载波模糊度问题等优点。根据各种滤波器算法的特点和本应用的需求,给出了选用递归最小二乘算法实现的方法。通过计算机仿真,验证了提出的方法能够在14 dB的信噪比下,以1个采样间隔的时间延迟分辨率和0.005周的载波相位估计精度估计出GPS L1的多径信号。  相似文献   

6.
7.
Airborne GPS systems are being upgraded to provide sufficient positioning accuracy to support automatic landing operations in low visibility conditions. This is made possible by differential GPS (DGPS), in which the errors common to the airborne receiver and ground station are removed by knowledge of the latter's precise location. However, errors specific to the airborne system remain, of which the dominant components are receiver noise and multipath. To support the assessment of the integrity of the signal in space, these residual errors are incorporated in a statistically based error model, designated as the "standard model." The standard model is defined as the standard deviation of a Gaussian distribution that overbounds the residual pseudo-range (PR) error. It relates the standard deviation of the overbounding distribution to the elevation angle of the satellite relative to the local level coordinate system. The international community is currently developing improved standards to enable DGPS systems to support landings in the worst visibility conditions (i.e., CAT III). As a part of this development, the standard model for multipath is being re-evaluated and an improved model is sought. In order to better characterize the residual multipath errors, tools for accurate calculation of the airframe scattering effects are needed. Development of such tools is the subject of this paper. A new method for accurately computing pseudo-range error, based on the use of high-fidelity EM models, is described. This approach provides new insight into the mechanisms causing multipath error.  相似文献   

8.
《中国航空学报》2023,36(5):475-485
The Tianhui-2 02 (TH02-02) satellite formation, as a supplement to the microwave mapping satellite system Tianhui-2 01 (TH02-01), is the first Interferometric Synthetic Aperture Radar (InSAR) satellite formation-flying system that supports the tracking of BeiDou global navigation Satellite system (BDS3) new B1C and B2a signals. Meanwhile, the twin TH02-02 satellites also support the tracking of Global Positioning System (GPS) L1&L2 and BDS B1I&B3I signals. As the spaceborne receiver employs two independent boards to track the Global Navigation Satellite System (GNSS) satellites, we design an orbit determination strategy by estimating independent receiver clock offsets epoch by epoch for each GNSS to realize the multi-GNSS data fusion from different boards. The performance of the spaceborne receiver is evaluated and the contribution of BDS3 to the kinematic and reduced-dynamic Precise Orbit Determination (POD) of TH02-02 satellites is investigated. The tracking data onboard shows that the average number of available BDS3 and GPS satellites are 8.7 and 9.1, respectively. The carrier-to-noise ratio and carrier phase noise of BDS3 B1C and B2a signals are comparable to those of GPS. However, strong azimuth-related systematic biases are recognized in the pseudorange multipath errors of B1C and B3I. The pseudorange noise of BDS3 signals is better than that of GPS after eliminating the multipath errors from specific signals. Taking the GPS-based reduced-dynamic orbit with single-receiver ambiguity fixing technique as a reference, the results of BDS3-only and BDS3 + GPS combined POD are assessed. The Root Mean Square (RMS) of orbit comparison of BDS3-based kinematic and reduced-dynamic POD with reference orbit are better than 7 cm and 3 cm in three-Dimensional direction (3D). The POD performance based on B1C&B2a data is comparable to that based on B1I&B3I. The precision of BDS3 + GPS combined kinematic orbit can reach up to 3 cm (3D RMS), which has a more than 25% improvement relative to the GPS-only solution. In addition, the consistency between the BDS3 + GPS combined reduced-dynamic orbit and the GPS-based ambiguity-fixed orbit is better than 1.5 cm (3D RMS).  相似文献   

9.
Array antennas for DGPS   总被引:2,自引:0,他引:2  
Multipath interference limits the speed and accuracy of determining position by “differential” GPS techniques. A geodetic surveyor, for example, requires multipath interference rejection of about 36+20 log10 sin ϵ dB, where ϵ is the elevation angle of the satellite being observed. Signal processing in a GPS receiver cannot satisfy this requirement. A receiving antenna is required that can sufficiently reject signals arriving from below the horizon. Available antennas have inadequate rejection, and brute-force methods of improving them, by enlarging their ground-planes, are impractical. A compact, ground-planeless, dual-band, GPS antenna with improved multipath rejection has been designed and field-tested. This antenna resembles a vertical post rather than a horizontal platter; within its 0.1-m diameter, 0.4-m tall radome is a vertical array of turnstile elements. In field tests, a three-element array antenna rejected multipath better than a 0.5-m diameter ground-plane antenna by an average of 5 dB. A five-element array antenna appears superior to a 0.9-m diameter ground-plane antenna  相似文献   

10.
This paper presents a discussion of multipath disturbance of a satellite interferometer. A mathematical expression is developed, in which an upper bound of the error of the measured angle difference and position locations owing to multipath is expressed in terms of geometrical system parameters and the amplitude and phase of the multipath signal. Because diffuse reflection from a rough surface is predominant, the spectrum of multipath reflections is calculated. Multipath rejection by filtering is discussed, and curves for the position errors are presented.  相似文献   

11.
Modeling and analysis for the GPS pseudo-range observable   总被引:3,自引:0,他引:3  
In this paper, a digital system for the Global Positioning System (GPS) pseudo-range observable is modeled and analyzed theoretically. The observable is measured in a GPS receiver by accurately tracking the pseudorandom noise (PRN) code phase of the input GPS signal using a digital energy detector and a digital delay lock loop (DDLL). The following issues are presented: (1) mathematical modeling of the digital PRN code acquisition and tracking system, (2) the closed-form expression derivation for the detection and false-alarm probabilities of the acquisition process and for the variance of code phase tracking error, and (3) the linear and nonlinear performance analysis of the DDLL for optimizing the receiver structures and parameters with tradeoff between the tracking errors due to receiver dynamics and due to input noise  相似文献   

12.
多径效应对GPS载波相位观测量的影响   总被引:1,自引:0,他引:1  
孙礼  王银锋  张其善 《航空学报》1998,19(Z1):76-78
推导了GPS接收机中多径效应引入的最大载波相位跟踪误差的闭合形式。得到以下结论:当直达信号跟踪误差不超过1码片时,最大载波测相多径误差为1/4周,该值出现在测码伪距多径误差最小的情况下;当直达信号跟踪误差超过或等于1码片时,接收机跟踪多径信号,信号误检发生。  相似文献   

13.
OTHR multipath tracking with uncertain coordinate registration   总被引:1,自引:0,他引:1  
Multipath probabilistic data association (MPDA) exploits discrete multipath propagation to improve tracking performance for systems such as over-the-horizon radar (OTHR). The original formulation assumed a known ionospheric environment for mapping radar measurements to ground coordinates. We consider an extension of the technique that allows for ionospheric uncertainties affecting the transformation between slant and ground coordinates in addition to the usual sensor noise. A new technique, MPDA for uncertain coordinate registration (MPCR), is described and tested on simulated and real OTHR data. The study assumes a two-layer spherical mirror ionosphere with random fluctuations of the ionospheric heights around known mean values. An extensive Monte Carlo analysis of track errors and track loss is carried out for MPCR under two scenarios and the results are compared with a baseline probabilistic data association (PDA) approach and with MPDA. The results indicate the high reliability of the MPCR approach.  相似文献   

14.
由于接收机输入端的信噪比对接收机的捕获性能具有很重要的意义,所以要尽量减少接收机输入端信噪比的损失。本文首先给出了含高斯白噪声的GPS信号经过不同量化位数和量化电平的量化器后的输出信噪比计算公式;然后,在此基础上分析其对接收机捕获性能的影响;最后,仿真实验表明,接收机可以在不影响捕获性能的情况下,尽量选择合适的量化位数和量化门限。实验结果也为量化器的设计提供了重要的技术参考。  相似文献   

15.
Multicomponent receiver architectures for GPS interference suppression   总被引:1,自引:0,他引:1  
The global positioning system (GPS) is a one-way satellite-based navigation system employing spread-spectrum techniques that is widely used for commercial and military applications. Although the very low signal-to-noise ratio (SNR) is handled by the large spreading gain, GPS is susceptible to high-power interference signals and various types of jammers. We propose multicomponent receiver architectures for GPS interference suppression. A conventional antenna system is first considered which utilizes a minimum-variance distortionless-response (MVDR) beam former and assumes that the GPS signal angle of arrival (AOA) and the antenna model are known at the receiver. However, this receiver is sensitive to AOA estimation errors and can have a high computational complexity. This sensitivity problem is eliminated by a multicomponent system based on a multistage matched filter (MF). Since this MF receiver also has a high computational complexity because the jammer AOAs must be estimated, we introduce a blind interference canceler based on the constant modulus (CM) array that is insensitive to AOA estimation errors and has a low computational complexity. Computer simulations are provided to illustrate the performance of the various systems for interference suppression in example signal scenarios.  相似文献   

16.
A new multipath mitigation technique is proposed for binary offset carrier (BOC) signals in global navigation satellite systems (GNSS) using the concept of gating function originally conceived for the GPS coarse-acquisition (C/A) code. Specially-tailored pulses are utilized to diminish the number of false-lock points of the code discriminator response and to improve the multipath mitigation capability. The code loop includes only four real correlators (two extra correlators are required for the simplified bump-jumping algorithm with BOC(n,n) signals). Results obtained with BOC(n,n) and BOC(2n,n) signals show that this technique eliminates the multipath ranging errors for reflected rays with relative delays typically above twenty percent of the spreading code chip duration, thus comparing favorably with the conventional receiver correlation techniques.  相似文献   

17.
为了抑制多径效应对GPS的严重影响,在分析了多径效应对伪码跟踪环路影响的基础上,提出了一种基于空间平滑的改进稳健波束形成算法来抑制GPS多径效应。以直线阵为基础,采用前后向空间平滑算法对阵列接收信号进行预处理,针对各种失配,采用改进的稳健波束形成算法进行处理。该方法既可以有效地抑制GPS多径效应,又可以有效地改善伪码跟踪环路的跟踪精度。仿真实验结果验证了所提方法的正确性和有效性,具有较高的工程实践价值。  相似文献   

18.
Ground-multi path mitigation via polarization steering of GPS signal   总被引:1,自引:0,他引:1  
Multipath (MP) is the dominant error source in Global Positioning System (GPS) code-based position solutions requiring high accuracy. A technique is introduced here to mitigate error due to ground-reflected MP signals. The technique uses two orthogonal dipoles to capture the direct GPS signal and the ground-reflected GPS signal. Adjusting the amplitude and phase of the received voltage between the two dipoles can reduce the impact of MP error. Theoretical derivations of this technique are performed for a GPS signal upon reflection from dry soil, seawater, and fresh water. The theoretical results are verified with a real world experiment on the aforementioned surfaces. GPS pseudo-range (PR) and carrier-to-noise ratio (C/No) measurements for specific satellites are used to verify the predicted theoretical results.  相似文献   

19.
Performance analysis of GPS carrier phase observable   总被引:3,自引:0,他引:3  
The accuracy analysis of Global Positioning System (GPS) carrier phase observable measured by a digital GPS receiver is presented. A digital phase-locked loop (DPLL) is modeled to extract the carrier phase of the received signal after a pseudorandom noise (PRN) code synchronization system despreads the received PRN coded signal. Based on phase noise characteristics of the input signal, the following performance of the first, second, and third-order DPLLs is analyzed mathematically: (1) loop stability and transient process; (2) steady-state probability density function (pdf), mean and variance of phase tracking error; (3) carrier phase acquisition performance; and (4) mean time to the first cycle-slipping. The theoretical analysis is verified by Monte Carlo computer simulations. The analysis of the dependency of the phase input noise and receiver design parameters provides with an important reference in designing the carrier phase synchronization system for high accuracy GPS positioning  相似文献   

20.
Filter robustness is defined herein as the ability of the Global Positioning System/Inertial Navigation System (GPS-INS) Kalman filter to cope with adverse environments and input conditions, to successfully identify such conditions and to take evasive action. The formulation of two such techniques for a cascaded GPS-INS Kalman filter integration is discussed This is an integration in which the navigation solution from a GPS receiver is used as a measurement in the filter to estimate inertial errors and instrument biases. The first technique presented discusses the handling of GPS position biases. These are due to errors in the GPS satellite segment, and are known to be unobservable. They change levels when a satellite constellation change occurs, at which point they introduce undesirable filter response transients. A method of suppressing these transients is presented. The second technique presented deals with the proper identification of the filter measurement noise. Successful formulation of the noise statistics is a factor vital to the healthy estimation of the filter gains and operation. Furthermore, confidence in the formulation of these statistics can lead to the proper screening and rejection of bad data in the filter. A method of formulating the filter noise statistics dynamically based on inputs from the GPS and the INS is discussed  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号