首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Multipath-adaptive GPS/INS receiver   总被引:2,自引:0,他引:2  
Multipath interference is one of the contributing sources of errors in precise global positioning system (GPS) position determination. This paper identifies key parameters of a multipath signal, focusing on estimating them accurately in order to mitigate multipath effects. Multiple model adaptive estimation (MMAE) techniques are applied to an inertial navigation system (INS)-coupled GPS receiver, based on a federated (distributed) Kalman filter design, to estimate the desired multipath parameters. The system configuration is one in which a GPS receiver and an INS are integrated together at the level of the in-phase and quadrature phase (I and Q) signals, rather than at the level of pseudo-range signals or navigation solutions. The system model of the MMAE is presented and the elemental Kalman filter design is examined. Different parameter search spaces are examined for accurate multipath parameter identification. The resulting GPS/INS receiver designs are validated through computer simulation of a user receiving signals from GPS satellites with multipath signal interference present The designed adaptive receiver provides pseudo-range estimates that are corrected for the effects of multipath interference, resulting in an integrated system that performs well with or without multipath interference present.  相似文献   

2.
Receiver clock-based integrity monitoring for GPS precision approaches   总被引:2,自引:0,他引:2  
The errors in the vertical position and clock bias estimates obtained from GPS pseudo-range measurements are highly correlated. Therefore, the error in a vertical position estimate can be predicted if we know the clock bias estimation error. The latter can be estimated if the clock bias changes smoothly and, therefore, predictably. The current technology appears capable of manufacturing clocks which can meet this smoothness requirement for airborne use within the constraints of size, weight, and cost. We discuss the theoretical basis and present empirical data from laboratory and field experiments with a commercial rubidium standard to explore the benefits of integrity monitoring for precision approaches based on the receiver clock.  相似文献   

3.
The local area augmentation system (LAAS) is a ground-based differential GPS system being developed to support aircraft precision approach and landing navigation with guaranteed integrity. To quantitatively appraise navigation integrity, an aircraft computes vertical and lateral protection levels using the standard deviation of pseudo-range correction errors, /spl sigma//sub pr/spl I.bar/gnd/, broadcast by the LAAS ground facility (LGF). Thus, one significant integrity risk is that the true standard deviation (sigma) of the pseudo-range correction error distribution may grow to exceed the broadcast correction error sigma or that the true mean of the correction error distribution becomes excessive during LAAS operation. This event may occur due to unexpected anomalies of GPS measurements. To insure that the true error distribution is bounded by a zero-mean Gaussian distribution with the broadcast sigma value, real-time sigma and mean monitoring is necessary. Both direct estimation and cumulative sum (CUSUM) methods are useful to detect violations with acceptable residual integrity risk. For sigma monitoring, the estimation method more rapidly detects small violations of /spl sigma//sub pr/spl I.bar/gnd/ but the fast initial response (FIR) CUSUM variant more promptly detects significant violations that would pose a larger threat to user integrity. For the purposes of mean monitoring, the FIR CUSUM variant is superior to the estimation method in detecting any mean violations. The results demonstrate that real-time protection is achievable against all sizes of sigma/mean failures that can threaten navigation integrity.  相似文献   

4.
In November 1990, a differential GPS/inertial flight test was conducted to acquire a system performance database and demonstrate automatic landing using an integrated differential GPS/INS with barometric and radar altimeters. Flight test results obtained from postflight data analysis are presented. These results include characteristics of DGPS/inertial error, using a laser tracker as a reference. In addition, data are provided on the magnitude of the differential correlations and vertical channel performance with and without radar altimeter augmentation. Flight test results show one sigma DGPS/inertial horizontal errors of 9 ft and one sigma DGPS inertial vertical errors of 15 ft. Without selective availability effects, the differential corrections are less than 10 ft and are dominated by receiver unique errors over the time period of an approach. Therefore, the one sigma performance of the autonomous GPS (8-ft horizontal and 20-ft vertical) is very similar to the DGPS/inertial performance. Postprocessed results also demonstrate significant improvements in vertical channel performance when GPS/inertial is aided with radar altimeter along with a low-resolution terrain map  相似文献   

5.
用于SAR运动补偿的DGPS/SINS组合系统研究   总被引:12,自引:1,他引:11  
曹福祥  保铮  袁建平  郑谔 《航空学报》2001,22(2):121-124
使用考虑位置误差相关项的伪距率观测模型 ,研究了用于合成孔径雷达运动补偿的差分 GPS/ SINS伪距率组合系统。结果表明 ,组合系统的长期位置精度能达到 1 m左右。 GPS数据更新率低于 INS,在 GPS测量时间间隔内 ,组合系统的性能仅由 INS决定。虽然 INS误差随时间积累 ,在 GPS数据更新率为 1 s的情况下 ,即使采用中等精度的惯性仪表 ,其相对位置精度为厘米级 (这里相对位置精度指组合系统在 GPS测量时间间隔内位置误差的变化范围)。  相似文献   

6.
SNR-based multipath error correction for GPS differential phase   总被引:4,自引:0,他引:4  
Carrier phase multipath is currently the limiting error source for high precision Global Positioning System (GPS) applications such as attitude determination and short baseline surveying. Multipath is the corruption of the direct GPS signal by one or more signals reflected from the local surroundings. Multipath reflections affect both the carrier phase measured by the receiver and signal-to-noise ratio (SNR). A technique is described which uses the SNR information to correct multipath errors in differential phase observations. The potential of the technique to reduce multipath to almost the level of receiver noise was demonstrated in simulations. The effectiveness on real data was demonstrated with controlled static experiments. Small errors remained, predominantly from high frequency multipath. The low frequency multipath was virtually eliminated. The remaining high frequency receiver noise can be easily removed by smoothing or Kalman filtering  相似文献   

7.
多径效应对GPS载波相位观测量的影响   总被引:1,自引:0,他引:1  
孙礼  王银锋  张其善 《航空学报》1998,19(Z1):76-78
推导了GPS接收机中多径效应引入的最大载波相位跟踪误差的闭合形式。得到以下结论:当直达信号跟踪误差不超过1码片时,最大载波测相多径误差为1/4周,该值出现在测码伪距多径误差最小的情况下;当直达信号跟踪误差超过或等于1码片时,接收机跟踪多径信号,信号误检发生。  相似文献   

8.
Modeling and analysis for the GPS pseudo-range observable   总被引:3,自引:0,他引:3  
In this paper, a digital system for the Global Positioning System (GPS) pseudo-range observable is modeled and analyzed theoretically. The observable is measured in a GPS receiver by accurately tracking the pseudorandom noise (PRN) code phase of the input GPS signal using a digital energy detector and a digital delay lock loop (DDLL). The following issues are presented: (1) mathematical modeling of the digital PRN code acquisition and tracking system, (2) the closed-form expression derivation for the detection and false-alarm probabilities of the acquisition process and for the variance of code phase tracking error, and (3) the linear and nonlinear performance analysis of the DDLL for optimizing the receiver structures and parameters with tradeoff between the tracking errors due to receiver dynamics and due to input noise  相似文献   

9.
Aiming at mitigating multipath effect in dynamic global positioning system (GPS) satellite navigation applications, an approach based on channel blind equalization and real-time recursive least square (RLS) algorithm is proposed, which is an application of the wireless communication channel equalization theory to GPS receiver tracking loops. The blind equalization mechanism builds upon the detection of the correlation distortion due to multipath channels; therefore an increase in the number of correlator channels is required compared with conventional GPS receivers. An adaptive estimator based on the real-time RLS algorithm is designed for dynamic estimation of multipath channel response. Then, the code and carrier phase receiver tracking errors are compensated by removing the estimated multipath components from the correlators’ outputs. To demonstrate the capabilities of the proposed approach, this technique is integrated into a GPS software receiver connected to a navigation satellite signal simulator, thus simulations under controlled dynamic multipath scenarios can be carried out. Simulation results show that in a dynamic and fairly severe multipath environment, the proposed approach achieves simultaneously instantaneous accurate multipath channel estimation and significant multipath tracking errors reduction in both code delay and carrier phase.  相似文献   

10.
11.
接收机伪距与伪距率的计算和误差补偿是进行北斗系统应用开发的关键之一。本文利用北斗卫星播发的星历等导航电文数据,计算得到北斗卫星位置与速度等信息,对接收机伪距误差补偿,并计算得到伪距率。利用卫星的位置、速度,得到伪距和伪距率的误差值,验证了伪距和伪距率的有效性。  相似文献   

12.
GPS code and carrier multipath mitigation using a multiantennasystem   总被引:1,自引:0,他引:1  
Multipath is a major source of error in high precision Global Positioning System (GPS) static and kinematic differential positioning. Multipath accounts for most of the total error budget in carrier phase measurements in a spacecraft attitude determination system. It is a major concern in reference stations, such as in Local Area Augmentation Systems (LAAS), whereby corrections generated by a reference station, which are based on multipath corrupted measurements, can significantly influence the position accuracy of differential users. Code range, carrier phase, and signal-to-noise (SNR) measurements are all affected by multipath, and the effect is spatially correlated within a small area. In order to estimate and remove code and carrier phase multipath, a system comprising a cluster of five GPS receivers and antennas is used at a reference station location. The spatial correlation of the receiver data, and the known geometry among the antennas, are exploited to estimate multipath for each satellite in each antenna in the system. Generic receiver code and carrier tracking loop discriminator functions are analyzed, and relationships between receiver data, such as code range, carrier phase, and SNR measurements, are formulated and related to various multipath parameters. A Kalman filter is described which uses a combination of the available information from the antennas (receivers) in the multiantenna cluster to estimate various multipath parameters. From the multipath parameters, the code range and carrier phase multipath is estimated and compensated. The technique is first tested on simulated data in a controlled multipath environment. Results are then presented using field data and show a significant reduction in multipath error  相似文献   

13.
Carrier phase differential GPS (DGPS) navigation architectures and algorithms for automatic shipboard landing of aircraft are described. Processing methodologies are defined to provide high integrity carrier phase cycle estimation and positioning by optimally exploiting the complementary benefits of measurement filtering and satellite geometric redundancy for the terminal navigation problem. Navigation performance sensitivity to the standard deviations of raw carrier and code phase measurement errors, measurement error correlation times, and the filtering duration is quantified. Necessary conditions to ensure acceptable terminal navigation availability are specifically defined.  相似文献   

14.
Marine radiobeacon networks are being used to broadcast differential Global Positioning System (DGPS) corrections to marine users. The correction data digitally modulate signals from some of the existing marine radiobeacons, which operate in the 285 to 325 kHz band, creating DGPS/radiobeacons. The corrections improve the accuracy of the GPS fix from 100 m to 5-10 m, and provide position fixing service for many marine applications which are too demanding for the normal GPS service. Forward error correction can be used to improve the reliability or range of the DGPS/radiobeacon signal. The improvements made possible by channel coding are analyzed, and a code for DGPS/radiobeacons is recommended  相似文献   

15.
Ranging airport pseudolite for local area augmentation   总被引:2,自引:0,他引:2  
This paper discusses the integration of an airport pseudolite (APL) into a local area augmented differential GPS based precision approach system. A prototype architecture is described that is being used to develop requirements for the local area augmentation system. Key features of this prototype system are presented along with its current performance. Key features discussed include the use of a multipath limiting antenna, APL signal structure factors, a unique APL automatic gain control, and GPS blanking technique to maximize APL tracking performance, while minimizing the electromagnetic interference to nominal DGPS performance  相似文献   

16.
Online INS/GPS integration with a radial basis function neural network   总被引:1,自引:0,他引:1  
Most of the present navigation systems rely on Kalman filtering to fuse data from global positioning system (GPS) and the inertial navigation system (INS). In general, INS/GPS integration provides reliable navigation solutions by overcoming each of their shortcomings, including signal blockage for GPS and growth of position errors with time for INS. Present Kalman filtering INS/GPS integration techniques have some inadequacies related to the stochastic error models of inertial sensors, immunity to noise, and observability. This paper aims to introduce a multi-sensor system integration approach for fusing data from INS and GPS utilizing artificial neural networks (ANN). A multi-layer perceptron ANN has been recently suggested to fuse data from INS and differential GPS (DGPS). Although being able to improve the positioning accuracy, the complexity associated with both the architecture of multi-layer perceptron networks and its online training algorithms limit the real-time capabilities of this technique. This article, therefore, suggests the use of an alternative ANN architecture. This architecture is based on radial basis function (RBF) neural networks, which generally have simpler architecture and faster training procedures than multi-layer perceptron networks. The INS and GPS data are first processed using wavelet multi-resolution analysis (WRMA) before being applied to the RBF network. The WMRA is used to compare the INS and GPS position outputs at different resolution levels. The RBF-ANN module is then trained to predict the INS position errors and provide accurate positioning of the moving platform. Field-test results have demonstrated that substantial improvement in INS/GPS positioning accuracy could be obtained by applying the combined WRMA and RBF-ANN modules.  相似文献   

17.
田玉刚  杨贵  吴蔚 《航空学报》2015,36(4):1250-1258
 惯性测量单元(IMU)与传感器视准轴的偏心角和偏心矢量是造成航空线阵列高光谱数据几何校正误差的主要原因之一。在分析偏心角与偏心矢量误差来源之后提出该误差由IMU主轴与传感器主轴的角度偏差、测区固定偏差、GPS中心与传感器投影中心相对偏差组成,在此基础上建立了较为严密的检校模型。针对模型解算时需要大量高精度控制点的问题,提出了一种高分影像辅助下的亚像元精度控制点自动提取方法。通过多地区、多传感器高光谱航测实验表明,亚像元精度控制点能有效提高模型解算精度。新检校模型可获得亚像元校正精度,推扫式传感器——应用型机载成像光谱仪(AISA)建模中误差约为0.39个像元,摆扫式传感器——实用型模块化成像光谱仪(OMIS)建模中误差约为0.23个像元,校正后的影像可直接进行拼接。  相似文献   

18.
Differential GPS on board naval vessels has been tested in severe multipath archipelago environment against a commercial laser tracker system. The average location difference was 3 meters and two periodic error components were found. Their tune constants were 1.8 and 28 seconds and the peak amplitudes 1.5 and 1.1 meters, respectively. In addition to these, a clear dependency of location error standard deviation figures on the GPS antenna mounting distance from the sea level was observed.  相似文献   

19.
Position Error Bound Calculation for GNSS using Measurement Residuals   总被引:2,自引:0,他引:2  
In safety-of-life applications of satellite navigation, the protection level (PL) equation translates what is known about the pseudo-range errors into a reliable limit on the positioning error. The current PL equations for satellite-based augmentation systems (SBAS) rely on Gaussian statistics. This approach is very practical: the calculations are simple and the receiver computation load is small. However, when the true distributions are far from Gaussian, such a characterization forces an inflation of the PLs that degrades performance. This happens in particular with errors with heavy tail distributions or for which there is not enough data to evaluate the distribution density up to small quantiles. We present a way of computing the optimal protection level when the pseudo-range errors are characterized by a mixture of Gaussian modes. First, we show that this error characterization adds a new flexibility and helps account for heavy tails without losing the benefit of tight core distributions. Then, we state the positioning problem using a Bayesian approach. Finally, we apply this method to PL calculations for the wide area augmentation system (WAAS) using real data from WAAS receivers. The results are very promising: vertical PLs are reduced by 50% without degrading integrity.  相似文献   

20.
基于最小二乘法残差的接收机自主完好性监测(receiver autonomous integrity monitoring,RAIM)算法本质是一种基于伪距残差矢量的一致性监测算法,但由于残差矢量中各分量具有一定的关联性,掩饰了某些重要的不一致性信息。为了消除这种关联性,提出了一种基于奇异值分解的接收机自主完好性监测方法。在方法中利用奇异值分解对伪距观测矩阵中的观测系数矩阵进行分解,获得奇异值空间矢量和奇异值空间矩阵。基于奇异值空间矢量构造能够直接反映故障卫星偏差信息的检验统计量,从而可以简便地进行粗差监测,更好地满足完好性监测需求。鉴于实际中完好性故障包含运控系统故障、导航系统故障、信号传播异常以及地面接收处理故障等多类因素,以脉冲型和阶跃型两种故障方式进行基于奇异值分解的RAIM故障检测与识别,并开展仿真分析研究。结果表明,提出的方法能够正确检测、识别故障卫星,在特定参数下能够达到很好的故障识别率,即当误警概率设置为1×10-5/h、引入阶跃故障误差为25 m时,算法能够实现98.8%的故障识别率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号