首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Launius RD 《Acta Astronautica》2003,53(4-10):823-831
There is a belief that exists in the United States about public support for NASA's activities. The belief is almost universally held that NASA and the cause of space exploration enjoyed outstanding public support and confidence in the 1960s during the era of Apollo and that public support waned in the post-Apollo era, only to sink to quite low depths in the decade of the 1990s. These beliefs are predicated on anecdotal evidence that should not be discounted, but empirical evidence gleaned from public opinion polling data suggest that some of these conceptions are totally incorrect and others are either incomplete or more nuanced than previously believed. This paper explores evolution of public support for space exploration since the 1960s. Using polling data from a variety of sources it presents trends over time and offers comments on the meaning of public perceptions for the evolution of space policy and the development of space exploration in the United States.  相似文献   

2.
Recent studies have identified the need to understand what shapes public attitudes toward space policy. I address this gap in the literature by developing a multivariate regression model explaining why many Americans support government spending on space exploration. Using pooled data from the 2006 and 2008 General Social Surveys, the study reveals that spending preferences on space exploration are largely apolitical and associated instead with knowledge and opinions about science. In particular, the odds of wanting to increase funding for space exploration are significantly higher for white, male Babyboomers with a higher socio-economic status, a fondness for organized science, and a post-secondary science education. As such, I argue that public support for NASA's spending epitomizes what Launius termed “Apollo Nostalgia” in American culture. That is, Americans benefitting most from the old social order of the 1960s developed a greater fondness for science that makes them more likely to lament the glory days of space exploration. The article concludes with suggestions for how to elaborate on these findings in future studies.  相似文献   

3.
器间通信技术能够确保遥控指令可靠到达探测器,并将探测器的科学探测数据回传给地面,在深空探测中发挥着重要作用。介绍了美国和中国的月球探测、火星探测工程中器间通信技术发展现状和工程应用情况,分析总结了深空探测器间通信技术的主要特点,并针对未来深空探测器间通信需求,提出了需要迫切解决的关键技术,为我国后续深空探测工程的实施提供支持。  相似文献   

4.
Historically, advocates of solar system exploration have disagreed over whether program goals could be entirely satisfied by robotic missions. Scientists tend to argue that robotic exploration is most cost-effective. However, the human space program has a great deal of support in the general public, thereby enabling the scientific element of exploration to be larger than it might be as a stand-alone activity. A comprehensive strategy of exploration needs a strong robotic component complementing and supporting human missions. Robots are needed for precursor missions, for crew support on planetary surfaces, and for probing dangerous environments. Robotic field assistants can provide mobility, access to scientific sites, data acquisition, visualization of the environment, precision operations, sample acquisition and analysis, and expertise to human explorers. As long as space exploration depends on public funds, space exploration must include an appropriate mix of human and robotic activity.  相似文献   

5.
Hubbard GS 《Acta Astronautica》2005,57(2-8):649-660
As we move boldly forward into the 21st century, there has rarely been a more exciting time in which to contemplate the future of space exploration. The President of the United States has made a new and ambitious commitment to exploration of the solar system and beyond. Robotic partners will play a vital role in ensuring that the Vision is truly "sustainable and affordable". Relevant science and technology will be discussed with particular emphasis on expertise from NASA Ames Research Center of which the author is Director. The likely evolution of the balance between human explorers and robotic explorers will be addressed.  相似文献   

6.
It has always been clear that one of the main driving forces behind the space race was Cold War propaganda. But just what impact did it have on ‘the minds of men everywhere’? This paper presents a survey of the impact of space exploration on popular culture in Britain in the 1950s and 1960s, concentrating chiefly on the cinema. Before the launch of Sputnik in 1957, although space was present in popular culture, it was generally aimed at a specialised audience. In the 1960s, interest in space became widespread and reached unexpected corners of popular culture such as pop music. This popular success had dangerous consequences, however: when public interest waned in the early 1970s, the immense cost of the Moon landings could no longer be justified on propaganda grounds and the project was massively reduced.  相似文献   

7.
This paper analyzes the objectives and activities of space exploration programs, and presents action plans and guidelines for a future sustainable global space exploration platform. While new cooperative mechanisms have emerged in recent decades, the now-unfolding era of global space exploration will lead to new models of cooperation, reflecting the legacy of partnerships and the evolution of a global endeavor. Consequently, the successful alignment of national and international stakeholders along lines drawn by commonality of purpose will be crucial to achieve a basis for marshalling sufficient resources for ambitious space projects, and to create necessary new political, economic, and legal frameworks. For the development of a successful global space exploration program, traditional approaches may need to be supplanted by a new paradigm including focus on information exchange, organizational knowledge, and human capital – as practiced in high-performance organizations (HPOs) – that go well beyond the current international working groups and multinational space efforts.  相似文献   

8.
We present a methodology that provides traceable analysis from stakeholders’ needs to prioritized goals for human space exploration. We first construct a network to represent the stakeholder environment of NASA’s human exploration efforts, then assess the intensity of these stakeholder needs, and build a numerical model to represent the flow of value in the network. The underlying principle is that as a rational actor, NASA should invest its resources in creating outputs that provide the greatest return of support to it. We showcase this methodology, seeded with test data, the results of which suggests that the most important outputs of the exploration endeavor are human and robotic exploration firsts and science data, but also include funding to the science community, providing interesting NASA mission event content directly to the public and to the media, and commercial contracts. We propose that goals should be structured to ensure these value outputs, and be written in such as way as to convey the subsequent creation of value in the network. The goals derived in this manner suggest that the majority of the value created by human space exploration derives from campaign level design, rather than from operation of transportation elements. There would be higher assurance that these value outputs would be delivered if a responsible official or entity within the exploration function was specifically tasked with ensuring stakeholder value creation.  相似文献   

9.
The exploration of space is a long-term endeavor that will require strong public support to weather societal and political changes over the period of its implementation. In August 2006, George Mason University's Center for Aerospace Policy Research organized a workshop to address this issue. The sustainability of space exploration was investigated from a variety of perspectives by invited experts from the space sector as well as from the market research and public relations fields. This paper summarizes the results of the workshop. It presents market research data along with recommendations for an active strategic communications effort as well as public engagement to enhance public support for space exploration, especially among the younger age groups which tend to be uninterested in space activities.  相似文献   

10.
With the beginning of space era, a new branch of medicine has arisen and has been developing along with human exploration of outer space. And even though space medicine mainly faces the same problems as traditional medicine--cosmonauts health care and their high efficiency--this branch, has its own features, associated with the unusual factors of space flight, of which weightlessness is the major one. During the development of manned cosmonautics (duration of a human stay in space has reached already 438 days), methods of cosmonauts medical support and monitoring of their condition have been developed, knowledge of human possibilities and methods of process of organism adaptation to various and frequently severe conditions of external environment have increased. All this led to the fact that nowadays space medicine can become useful for improvement of human health care not only in space but also on the Earth. Moreover, the problem of implementation of cosmonautics achievements, and in particular of space medicine, in practice of public health care presents one of the most important issues concerning human health care. It is also connected with public opinion which is more and more concerned about the efficiency of significant expenses on space activities, especially lately. People often are set by the questions: what has space given, what fruits has space research provided to mankind, which results of this research can be used on the Earth already today for improvement of their life, for discussion of many difficult earthly problems? In terms of using cosmonautics possibilities, its achievements for health care and treatment, it is possible to define a few branches, in which purposeful studies are carried out.  相似文献   

11.
Gwynne O  McKay C  Zubrin R 《Spaceflight》1991,33(6):208-212
The human exploration of Mars has the potential to return a rich harvest of scientific information about that planet, its possible past biological history and the prospects for future habitation by Earthly life. The realization of that potential will require new approaches and new technologies--a whole new paradigm in space exploration. Picture yourself exploring the surface of Mars, where your task involves conducting a detailed investigation of features larger than the United States in order to uncover a record of planetary history spanning over four billion years.  相似文献   

12.
US space exploration policy deliberations tend not to include citizens who lack direct, vested financial interests in the space enterprise. Could expanding the circle of US space policy development players to involve citizens more aptly serve space exploration and the interests of American democratic society in the 21st century? I evaluate the merits and feasibility of citizen participation, drawing upon democratic theory and scholarship analyzing public participation in techno-scientific matters, previous experiences of public involvement in space exploration policy formation, and reflections on my professional experiences in space policy development. I argue that public engagement will enrich the debate surrounding the US future in space and may point toward a program American citizens will support as a meaningful future in the cosmos. I suggest three guiding principles and outline four mechanisms that, if embraced by US space policy makers, could foster meaningful public participation in informing the US space exploration agenda.  相似文献   

13.
In recent years, great experience has been accumulated in manned flight astronautics for rendezvous in near-Earth orbit. During flights of Apollo spacecraft with crews that landed on the surface of the Moon, the problem of docking a landing module launched from the Moon’s surface with the Apollo spacecraft’s command module in a circumlunar orbit was successfully solved. A return to the Moon declared by leading space agencies requires a scheme for rendezvous of a spacecraft launched from an earth-based cosmodromee with a lunar orbital station. This paper considers some ballistic schemes making it possible to solve this problem with minimum fuel expenditures.  相似文献   

14.
Human space exploration since Apollo appears to lack an overall context. There has been an overall context for the world's space efforts. But it is an unofficial one and it is outmoded, because it was based on a false assumption. This is the space exploration plan articulated by Von Braun in the 1950s and restated as the Integrated Space Program - 1970–1990, whose principal aim is to send humans to explore Mars. The critical underlying assumption of this plan was that Mars is a planet much like Earth, with an active biosphere. This Program has persisted nearly two decades after this underlying assumption has been shown to be false. There is a competing context re-emerging for human space exploration and development which is better fitted to the needs of human society in the post-Cold War era than the Mars program embraced by NASA and, to a large extent, the USSR during the period of US-Russian competition. The original space program uses the resources of free space and provides an economic rationale for human space activity.  相似文献   

15.
Several nations are currently engaging in or planning for robotic and human space exploration programs that target the Moon, Mars and near-Earth asteroids. These ambitious plans to build new space infrastructures, transport systems and space probes will require international cooperation if they are to be sustainable and affordable. Partnerships must involve not only established space powers, but also emerging space nations and developing countries; the participation of these new space actors will provide a bottom-up support structure that will aid program continuity, generate more active members in the space community, and increase public awareness of space activities in both developed and developing countries. The integration of many stakeholders into a global space exploration program represents a crucial element securing political and programmatic stability. How can the evolving space community learn to cooperate on a truly international level while engaging emerging space nations and developing countries in a meaningful way? We propose a stepping stone approach toward a global space exploration program, featuring three major elements: (1) an international Earth-based field research program preparing for planetary exploration, (2) enhanced exploitation of the International Space Station (ISS) enabling exploration and (3) a worldwide CubeSat program supporting exploration. An international Earth-based field research program can serve as a truly global exploration testbed that allows both established and new space actors to gain valuable experience by working together to prepare for future planetary exploration missions. Securing greater exploitation of the ISS is a logical step during its prolonged lifetime; ISS experiments, partnerships and legal frameworks are valuable foundations for exploration beyond low Earth orbit. Cooperation involving small, low-cost missions could be a major stride toward exciting and meaningful participation from emerging space nations and developing countries. For each of these three proposed stepping stones, recommendations for coordination mechanisms are presented.  相似文献   

16.
《Space Policy》2014,30(3):143-145
The human exploration of space is pushing the boundaries of what is technically feasible. The space industry is preparing for the New Space era, the momentum for which will emanate from the commercial human spaceflight sector, and will be buttressed by international solar system exploration endeavours. With many distinctive technical challenges to be overcome, human spaceflight requires that numerous biological and physical systems be examined under exceptional circumstances for progress to be made. To effectively tackle such an undertaking significant intra- and international coordination and collaboration is required. Space life and biomedical science research and development (R & D) will support the Global Exploration Roadmap (GER) by enabling humans to ‘endure’ the extreme activity that is long duration human spaceflight. In so doing the field will discover solutions to some of our most difficult human health issues, and as a consequence benefit society as a whole. This space-specific R&D will drive a significant amount of terrestrial biomedical research and as a result the international community will not only gain benefits in the form of improved healthcare in space and on Earth, but also through the growth of its science base and industry.  相似文献   

17.
Chad Anderson 《Space Policy》2013,29(4):266-271
On May 24, 2012 SpaceX's Dragon capsule was launched and in doing so became the first commercially built vehicle to berth with and carry cargo to the International Space Station (ISS). It successfully completed its mission and returned to the Pacific Ocean on May 31, 2012.1 The docking of Dragon represented a historic moment where a commercial enterprise managed to achieve that which had previously only been accomplished by governments. “In the history of spaceflight – only four entities have launched a space capsule into orbit and successfully brought it back to Earth: the United States, Russia, China, and SpaceX”.2 While this is a monumental accomplishment for private industry, we cannot ignore the value of public–private partnerships and the role that government played in enabling this incredible achievement.In this paper I will examine how public–private partnerships are enabling the development of the commercial space industry, viewed through the lens of the Rethinking Business Institutional Hybrid Framework put forward by University of Oxford professors Marc Ventresca and Alex Nichols in their Rethinking Business MBA course. I intend to demonstrate that the NASA versus Commercial Space argument is a false dichotomy and that only by working together can both sectors continue to push the boundaries of space travel and exploration. I plan to do this by first discussing how the NASA-SpaceX partnership came about and the reasoning behind it. I will then explore what a public–private partnership (PPP) is, as compared to other government privatization schemes, and explain why Space Act Agreements are significantly different from anything done previously. I will then analyze the impact of these agreements and outline their benefits in order to demonstrate the value they create, especially in areas of mutual value creation and economic development.  相似文献   

18.
《Space Policy》2014,30(3):170-173
The Global Exploration Roadmap (GER) is driven by several goals and objectives that include space science, the search for life as well as preparatory science activities to enable human space exploration. The Committee on Space Research (COSPAR), through its Commissions and Panels provides an international forum that supports and promotes space exploration worldwide. COSPAR's Panel on Exploration (PEX) investigates a stepwise approach of preparatory research on Earth and in Low Earth Orbit (LEO) to facilitate a future global space exploration program. We summarize recent activities and workshops of PEX in support of the GER.  相似文献   

19.
《Acta Astronautica》2010,66(11-12):1689-1697
In late 2006, NASA's Constellation Program sponsored a study to examine the feasibility of sending a piloted Orion spacecraft to a near-Earth object. NEOs are asteroids or comets that have perihelion distances less than or equal to 1.3 astronomical units, and can have orbits that cross that of the Earth. Therefore, the most suitable targets for the Orion Crew Exploration Vehicle (CEV) are those NEOs in heliocentric orbits similar to Earth's (i.e. low inclination and low eccentricity). One of the significant advantages of this type of mission is that it strengthens and validates the foundational infrastructure of the United States Space Exploration Policy and is highly complementary to NASA's planned lunar sortie and outpost missions circa 2020. A human expedition to a NEO would not only underline the broad utility of the Orion CEV and Ares launch systems, but would also be the first human expedition to an interplanetary body beyond the Earth–Moon system. These deep space operations will present unique challenges not present in lunar missions for the onboard crew, spacecraft systems, and mission control team. Executing several piloted NEO missions will enable NASA to gain crucial deep space operational experience, which will be necessary prerequisites for the eventual human missions to Mars.Our NEO team will present and discuss the following:
  • •new mission trajectories and concepts;
  • •operational command and control considerations;
  • •expected science, operational, resource utilization, and impact mitigation returns; and
  • •continued exploration momentum and future Mars exploration benefits.
  相似文献   

20.
Nearly six years after the launch of the first International Space Station element, and four years after its initial occupation, the United States and our 6 international partners have made great strides in operating this impressive Earth orbiting research facility. This past year we have done so in the face of the adversity of operating without the benefit of the Space Shuttle. In his January 14, 2004, speech announcing a new vision for America's space program, President Bush affirmed the United States' commitment to completing construction of the International Space Station by 2010. The President also stated that we would focus our future research aboard the Station on the long-term effects of space travel on human biology. This research will help enable human crews to venture through the vast voids of space for months at a time. In addition, ISS affords a unique opportunity to serve as an engineering test bed for hardware and operations critical to the exploration tasks. NASA looks forward to working with our partners on International Space Station research that will help open up new pathways for future exploration and discovery beyond low Earth orbit. This paper provides an overview of the International Space Station Program focusing on a review of the events of the past year, as well as plans for next year and the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号