首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 573 毫秒
1.
The MICROSCOPE mission, to be launched in 2011, will perform the test of the universality of free fall (Equivalence Principle) to an accuracy of 10?15. The payload consists of two sensors, each controlling the free fall of a pair of test masses: the first for the test of the Equivalence Principle (titanium/platinum), the second for performance verification (platinum/platinum). The capability to detect a faint violation signal of the EP test is conditioned upon the rejection of disturbances arising from the coupling and misalignments of the instrument vectorial outputs. Therefore the performance of the mission depends on the success of the series of calibration operations which are planned during the satellite life in orbit. These operations involve forced motion of the masses with respect to the satellite. Specific data processing tools and simulations are integral parts of the calibration and performance enhancement process, as are the tests operated on ground at the ZARM drop tower. The presentation will focus on the current status of the MICROSCOPE payload, the rationale for the in-orbit calibrations, the data processing operations and the tests performed at the ZARM drop tower.  相似文献   

2.
Electromagnetic radiation emitted from a source carries momentum. Thus, the dissipation of waste thermal energy can produce disturbance forces on spacecraft surfaces if the energy is not dissipated in a symmetric pattern. This force can be computed for a plate element as the quotient of the radiated power in normal direction and the speed of light. Depending on mission and spacecraft design the resulting surface forces have to be included into the disturbance budget. At ZARM an elaborated method for the exact modeling of the disturbances caused by heat radiation was developed which can be used for any satellite mission with high requirements on perturbation knowledge (e.g. LISA, LISA pathfinder, MICROSCOPE). The method which will be presented in this paper is based on raytracing and finite element (FE) thermal analysis. As a demonstration of the potential of the method, preliminary results acquired with a test case model of the Pioneer 10/11 Radioisotopic Thermal Generators (RTGs) will be shown.  相似文献   

3.
Microscope Instrument Development,Lessons for GOCE   总被引:2,自引:0,他引:2  
Touboul  Pierre 《Space Science Reviews》2003,108(1-2):393-408
Two space missions are presently under development with payload based on ultra-sensitive electrostatic accelerometers. The GOCE mission takes advantage of a three axis gradiometer accommodated in a very stable thermal case on board a drag-free satellite orbiting at a very low altitude of 250 km. This ESA mission will perform the very highly accurate mapping of the Earth gravity field with a geographical resolution of 100 km. The MICROSCOPE mission is devoted to the test of the “Universality of free fall” in view of the verification of the Einstein Equivalence Principle (EP) and of the search of a new interaction. The MICROSCOPE instrument is composed of two pairs of differential electrostatic accelerometers and the accelerometer proof-masses are the bodies of the EP test. The satellite is also a drag-free satellite exhibiting a fine attitude control and in a certain way, each differential accelerometer is a one axis gradiometer with an arm of quite null length. The development of this instrument much interests the definition and the evaluation of the sensor cores of the gradiometer. The in flight calibration process of both instruments is also very similar. Lessons form these parallel developments are presented. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
The MICROSCOPE space mission aims at testing the Equivalence Principle (EP) with an accuracy of 10?15. The test is based on the precise measurement delivered by a differential electrostatic accelerometer on-board a drag-free microsatellite which includes two cylindrical test masses submitted to the same gravitational field and made of different materials. The experiment consists in testing the equality of the electrostatic acceleration applied to the masses to maintain them relatively motionless at a well-known frequency. This high precision experiment is compatible with only very little perturbations. However, aliasing arises from the finite time span of the measurement, and is amplified by measurement losses. These effects perturb the measurement analysis. Numerical simulations have been run to estimate the contribution of a perturbation at any frequency on the EP violation frequency and to test its compatibility with the mission specifications. Moreover, different data analysis procedures have been considered to select the one minimizing these effects taking into account the uncertainty about the frequencies of the implicated signals.  相似文献   

5.
An assessment is presented of the probable magnitude of ocean signals causing aliasing in ocean bottom pressure measurements from the GRACE satellite mission. Even after modelling as much of the high frequency signal as possible, variability between 1 mbar (in quiet ocean regions) and 10 mbar (on some shelves) is likely to remain. Interpretation of the resulting retrievals will therefore rely on the facts that the satellite sampling will average the aliasing signal to some extent, and that the spatial patterns of aliased signal and true signal will be different. To this end, a theoretical argument is given, and supported by model diagnostics, suggesting that observable bottom pressure signals will be strongly constrained by the shape of the ocean floor. The modelled magnitudes offer the prospect of significant detectable signals and, while the model accuracy can be called into question, there are hints from Earth rotation and satellite orbit measurements that significant mass redistributions occur in the ocean. It seems certain that we will learn something new about the oceans from GRACE. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
Satellites in low Earth orbits are influenced by the Earth’s atmosphere. The interactions between the molecules and the spacecraft cause the highest non-gravitational force, which in magnitude is comparable to planetary disturbances. Therefore the modelling of atmospheric drag effects is important for many missions with a scientific background like STEP (Satellite Test of Equivalence Principle). With the STEP mission variations between gravitational and inertial mass shall be measured with an accuracy of 10?18. The results are of great interest for cosmological and gravitational theories. To achieve the aimed accuracy, a precise model of external disturbances is necessary. In this article the method of Ray-Tracing is used to quantify the atmospheric drag forces and torques for spacecrafts of arbitrary shape.  相似文献   

7.
NASA’s New Horizons (NH) Pluto–Kuiper Belt (PKB) mission was selected for development on 29 November 2001 following a competitive selection resulting from a NASA mission Announcement of Opportunity. New Horizons is the first mission to the Pluto system and the Kuiper belt, and will complete the reconnaissance of the classical planets. New Horizons was launched on 19 January 2006 on a Jupiter Gravity Assist (JGA) trajectory toward the Pluto system, for a 14 July 2015 closest approach to Pluto; Jupiter closest approach occurred on 28 February 2007. The ~400 kg spacecraft carries seven scientific instruments, including imagers, spectrometers, radio science, a plasma and particles suite, and a dust counter built by university students. NH will study the Pluto system over an 8-month period beginning in early 2015. Following its exploration of the Pluto system, NH will go on to reconnoiter one or two 30–50 kilometer diameter Kuiper Belt Objects (KBOs) if the spacecraft is in good health and NASA approves an extended mission. New Horizons has already demonstrated the ability of Principal Investigator (PI) led missions to use nuclear power sources and to be launched to the outer solar system. As well, the mission has demonstrated the ability of non-traditional entities, like the Johns Hopkins Applied Physics Laboratory (JHU/APL) and the Southwest Research Institute (SwRI) to explore the outer solar system, giving NASA new programmatic flexibility and enhancing the competitive options when selecting outer planet missions. If successful, NH will represent a watershed development in the scientific exploration of a new class of bodies in the solar system—dwarf planets, of worlds with exotic volatiles on their surfaces, of rapidly (possibly hydrodynamically) escaping atmospheres, and of giant impact derived satellite systems. It will also provide other valuable contributions to planetary science, including: the first dust density measurements beyond 18 AU, cratering records that shed light on both the ancient and present-day KBO impactor population down to tens of meters, and a key comparator to the puzzlingly active, former dwarf planet (now satellite of Neptune) called Triton which is in the same size class as the small planets Eris and Pluto.  相似文献   

8.
We present a new method for a high-accuracy reconstruction of the attitude for a slowly spinning satellite. This method, referred to as the fully-dynamic approach, explores the possibility to describe the satellite's attitude as that of a rigid body subject to continuous external torques. The method is tried out on the Hipparcos data and is shown to reduce the noise for the along-scan attitude reconstruction for that mission by about a factor two to three. The dynamic modelling is expected to give a more accurate representation of the satellite's attitude than was obtained with a pure mathematical modelling. As such, it decreases the degrees of freedom in the a posteriori reconstruction. Some of the decrease is obtained through accumulating and subsequently implementing information on high frequency components in the solar radiation torques, which show to be systematic and predictable. This could be expected, as they are primarily linked to the external geometry and optical properties of the satellite. In the context of an astrometric mission, the methods presented here can only be applied as a final iteration step: the star positions that are used to reconstruct the attitude are also part of the scientific objectives of the mission. An estimate for the potential of a re-reduction of the Hipparcos data using the fully-dynamic model for the attitude reconstruction was obtained from test reductions of the first 24 months of mission data. Improvement of the accuracies of the astrometric parameters for all stars brighter than Hp=9.0 appears possible. The noise on the astrometric parameters for these stars was affected significantly by the along-scan attitude noise, which dominated for stars brighter than Hp=4.5. The possible improvement for stars brighter than about Hp=4.5 may, after iterations, be as much as a factor three. The reduced noise levels also allow a more accurate calibration and monitoring of instrument parameters, leading potentially to a better understanding of the instrument and the scientific data obtained with it. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
基于"嫦娥二号"卫星再拓展试验的设计轨道,研究各种摄动力对轨道确定精度的影响,得出的结论是:若要达到km量级的轨道确定精度,必须考虑除天王星和海王星之外所有大行星以及日月的质点引力。文章进一步利用数值分析法研究再拓展任务的轨道确定精度,分析结果表明:基于目前的测控条件,使用30 d以上的测轨弧段可以得到稳定可靠的轨道解,而短弧(小于20 d)稳定轨道的获取需要VLBI(甚长基线干涉)测轨数据支持;当"嫦娥二号"距离地球700万km时,测控精度可优于30 km;虽然每天测轨弧段的增加可以改善轨道精度,但是当增加到8 h以上时,定轨精度将不再有明显改善。  相似文献   

10.
Wahr  John  Velicogna  Isabella 《Space Science Reviews》2003,108(1-2):319-330
The NASA/DLR satellite gravity mission GRACE, launched in March, 2002, will map the Earth's gravity field at scales of a few hundred km and greater, every 30 days for five years. These data can be used to solve for time-variations in the gravity field with unprecedented accuracy and resolution. One of the many scientific problems that can be addressed with these time-variable gravity estimates, is post glacial rebound (PGR): the viscous adjustment of the solid Earth in response to the deglaciation of the Earth's surface following the last ice age. In this paper we examine the expected sensitivity of the GRACE measurements to the PGR signal, and explore the accuracy with which the PGR signal can be separated from other secular gravity signals. We do this by constructing synthetic GRACE data that include contributions from a PGR model as well as from a number of other geophysical processes, and then looking to see how well the PGR model can be recovered from those synthetic data. We conclude that the availability of GRACE data should result in improved estimates of the Earth's viscosity profile. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
The Juno Gravity Science Instrument   总被引:1,自引:0,他引:1  
The Juno mission’s primary science objectives include the investigation of Jupiter interior structure via the determination of its gravitational field. Juno will provide more accurate determination of Jupiter’s gravity harmonics that will provide new constraints on interior structure models. Juno will also measure the gravitational response from tides raised on Jupiter by Galilean satellites. This is accomplished by utilizing Gravity Science instrumentation to support measurements of the Doppler shift of the Juno radio signal by NASA’s Deep Space Network at two radio frequencies. The Doppler data measure the changes in the spacecraft velocity in the direction to Earth caused by the Jupiter gravity field. Doppler measurements at X-band (\(\sim 8\) GHz) are supported by the spacecraft telecommunications subsystem for command and telemetry and are used for spacecraft navigation as well as Gravity Science. The spacecraft also includes a Ka-band (\(\sim 32\) GHz) translator and amplifier specifically for the Gravity Science investigation contributed by the Italian Space Agency. The use of two radio frequencies allows for improved accuracy by removal of noise due to charged particles along the radio signal path.  相似文献   

12.
《Air & Space Europe》2000,2(5):74-79
This article describes the key science objectives and system design aspects of the Ørsted satellite. It will also describe the integration and test activities performed to qualify the satellite for launch and present the first results obtained during the initial 6 months of the mission. The project is performed as a cooperative effort between a group of Danish universities, institutions and industries active in space activities. TERMA Elektronik AS manages the project.  相似文献   

13.
This paper examines the criteria for selecting the orbital and attitude prediction accuracy requirements for communications satellites. The accuracy requirements have been analyzed in terms of the various space operations involved, e.g., satellite acquisition, guidance and control, communications, telemetry, and command. It is hoped that the findings of this investigation will prove useful in satellite mission planning and design, thereby facilitating a judicious choice of the various satellite and ground components of the related subsystems.  相似文献   

14.
A generic drag-free simulator has been developed to aid in the design, on-orbit and post-mission data analysis phases of increasingly complex future missions such as Gaia and STEP. Adaptation to the recent science mission Gravity Probe B (GP-B) has been carried out for a first simulator verification with actual flight data. Lessons learned from GP-B have shown that the controls simulator, developed concurrently with GP-B, has been invaluable to test flight control design and furthermore to resolve on-orbit anomalies in a time-saving manner. A complete mission software simulator including controls, full-body dynamics and comprehensive spacecraft environment disturbances has been established for Gravity Probe B. This simulator provides a reference and development platform for future mission design. The importance of this effort lies in the challenge to meet rising science requirements for future missions in the area of maximum disturbance rejection.  相似文献   

15.
Provided here is an overview of Radiation Belt Storm Probes (RBSP) mission design. The driving mission and science requirements are presented, and the unique engineering challenges of operating in Earth’s radiation belts are discussed in detail. The implementation of both the space and ground segments are presented, including a discussion of the challenges inherent with operating multiple observatories concurrently and working with a distributed network of science operation centers. An overview of the launch vehicle and the overall mission design will be presented, and the plan for space weather data broadcast will be introduced.  相似文献   

16.
IMAGE mission overview   总被引:3,自引:0,他引:3  
Burch  J.L. 《Space Science Reviews》2000,91(1-2):1-14
The Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) mission is the first mission in NASA's MIDEX (Mid-size Explorer) program. It is the first satellite mission that is dedicated to imaging the Earth's magnetosphere. IMAGE will utilize the techniques of ultraviolet imaging, neutral atom imaging, and radio plasma imaging to map out global distributions of the electron and proton aurora; the helium ions of the plasmasphere; the ionospheric ion outflow; the medium-energy ions of the near-Earth plasma sheet, ring current, and polar cusp; the high-energy ions of the ring current and trapped radiation belts; and the total plasma density from the ionosphere out to the magnetopause. The imaging perspective is from an elliptical polar orbit with apogee at latitudes from 40° to 90° in the northern hemisphere. For ultraviolet and neutral atom imaging, the time resolution is set by the two-minute spin period of the IMAGE spacecraft, which will be sufficient to track the development of magnetospheric substorms. An important feature of the IMAGE mission is its completely open data set with no proprietary data or intervals. All data, along with software needed for plotting and analysis, will be available within 24 hours of acquisition.  相似文献   

17.
The Cluster ground segment design and mission operations concept have been defined according to the basic mission requirements, namely, to allow the transfer of the four spacecraft from the initial geostationary transfer orbit achieved at separation from the launcher into the final highly elliptical polar orbits, such that in the areas of scientific interest along their orbits, the four spacecraft will form a tetrahedral configuration with pre-defined separation distances, to be changed every six months during the mission. The Cluster mission operations will be carried out by ESA from its European Space Operations Centre; the task of merging the Principal Investigators' requests into coordinated, regular scientific mission planning inputs to ESOC will be undertaken by the Joint Science Operations Centre. The mission products will be distributed to the scientific community regularly in form of CD-ROMs. Principal Investigators will also have access to quick-look science, housekeeping telemetry and auxiliary data via an electronic network.  相似文献   

18.
嫦娥四号月球探测拟首次实现月球背面的软着陆,测控与数传依赖地月L2平动点的中继卫星,并有望获取四程测量与星间测量数据。对基于中继测量的环月探测器测定轨能力进行了仿真分析,结果表明,中继卫星可较好地实现环月探测器连续跟踪;在定轨能力方面,中继卫星自身轨道精度是制约环月探测器定轨精度的重要因素,当跟踪弧段达到5h以上时,定轨精度趋于稳定,但轨道精度较中继卫星的轨道精度相差1个量级;对于星间链路测量,除中继卫星自身的轨道精度外,星钟的稳定性是制约定轨精度的另一个重要因素,如果辅助以每天1h的地基跟踪亦可实现优于百m的定轨精度。  相似文献   

19.
Using the Earth albedo model and the orbital dynamics model developed as part of the First Look Project (Fast Initial In-Orbit Identification of Scientific Satellites) the terrestrial albedo is evaluated considering the orbits of some scientific missions as Gravity Probe B, MICROSCOPE and STEP. The model of the Earth albedo is based on the reflectivity data measured by NASA’s Earth Probe satellite, which is part of the TOMS project (Total Ozone Mapping Spectrometer). The reflectivity data are available daily, on line at the TOMS website, and they fluctuate because of changes in clouds and ice coverage and seasonal changes. The data resolution partitions the Earth surface into a number of cells. The incident irradiance on each cell is used to calculate total radiant flux from the cell. With the radiant flux from each cell, the irradiance at the satellite is calculated.  相似文献   

20.
Sneeuw  Nico 《Space Science Reviews》2003,108(1-2):37-46
The decade of the geopotentials started July 2000 with the launch of the German high-low SST mission CHAMP. Together with the joint NASA-DLR low-low SST mission GRACE and the ESA gradiometry mission GOCE an unprecedented wealth of geopotential data becomes available over the next few years. Due to the sheer number of unknown gravity field parameters (up to 100 000) and of observations (millions), especially the latter two missions are highly demanding in terms of computational requirements. In this paper several modelling strategies are presented that are based on a semi-analytical approach. In this approach the set of normal equations becomes block-diagonal with maximum block-sizes smaller than the spherical harmonic degree of resolution. The block-diagonality leads to a rapid and powerful gravity field analysis tool. Beyond the more-or-less conventional space-wise and time-wise formulations, the torus approach and Rosborough's representation are discussed. A trade-off between pros and cons of each of the modelling strategies will be given. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号