首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The LISA Pathfinder Drift Mode is an experimental mode proposed for the LISA Pathfinder drag free space mission. The Drift Mode’s specificity is to switch off a possibly noisy actuator periodically in order to minimize the actuation noise. The experiment delivers a measurement that includes data segments virtually free of any actuation force noise. The corresponding acceleration data is then used to estimate the experiment disturbance spectrum, using a calibrating and gap-filling algorithm. This article focuses on two points to demonstrate the feasibility and interest of such an experiment: a first part is dedicated to experiment control and dynamics, whereas the second part explains how to solve the challenging problem posed by the data analysis.  相似文献   

2.
The LISA Pathfinder Mission   总被引:1,自引:0,他引:1  
LISA Pathfinder, formerly known as SMART-2, is the second of the European Space Agency’s Small Missions for Advance Research and Technology, and is designed to pave the way for the joint ESA/NASA Laser Interferometer Space Antenna (LISA) mission, by testing the core assumption of gravitational wave detection and general relativity: that free particles follow geodesics. The new technologies to be demonstrated in a space environment include: inertial sensors, high precision laser interferometry to free floating mirrors, and micro-Newton proportional thrusters. LISA Pathfinder will be launched on a dedicated launch vehicle in late 2011 into a low Earth orbit. By a transfer trajectory, the sciencecraft will enter its final orbit around the first Sun-Earth Lagrange point. First science results are expected approximately 3 months thereafter. Here, we give an overview of the mission including the technologies being demonstrated.  相似文献   

3.
机抖激光陀螺捷联系统普遍采用抖频偏频技术消除闭锁效应的影响,这使得激光惯导成为自带激励源的动力学系统,动力学系统结构参数的设计将影响陀螺抖动效率和陀螺测量精度。在陀螺抖动驱动力条件下,建立了包含激光惯导箱体、惯性测量本体、陀螺、减振器、抖轮在内的较为完整的动力学模型,给出了该模型的解答过程和Matlab仿真计算结果,讨论了不同结构参数对抖动效率及惯导精度的影响规律,并在此基础上提出了激光惯导结构基于动特性设计的原则和方法。经验证,该方法能够有效指导结构转动惯量等参数设计,提高了设计质量,有效避免了激光惯导由结构设计不足而导致的动力学问题。  相似文献   

4.
The Dawn Framing Camera   总被引:1,自引:0,他引:1  
The Framing Camera (FC) is the German contribution to the Dawn mission. The camera will map 4 Vesta and 1 Ceres through a clear filter and 7 band-pass filters covering the wavelengths from the visible to the near-IR. The camera will allow the determination of the physical parameters of the asteroids, the reconstruction of their global shape as well as local topography and surface geomorphology, and provide information on composition via surface reflectance characteristics. The camera will also serve for orbit navigation. The resolution of the Framing Camera will be up to 12 m per pixel in low altitude mapping orbit at Vesta (62 m per pixel at Ceres), at an angular resolution of 93.7 ??rad?px?1. The instrument uses a reclosable front door to protect the optical system and a filter-wheel mechanism to select the band-pass for observation. The detector data is read out and processed by a data processing unit. A power converter unit supplies all required power rails for operation and thermal maintenance. For redundancy reasons, two identical cameras were provided, both located side by side on the +Z-deck of the spacecraft. Each camera has a mass of 5.5 kg.  相似文献   

5.
Particle acceleration and loss in the million electron Volt (MeV) energy range (and above) is the least understood aspect of radiation belt science. In order to measure cleanly and separately both the energetic electron and energetic proton components, there is a need for a carefully designed detector system. The Relativistic Electron-Proton Telescope (REPT) on board the Radiation Belt Storm Probe (RBSP) pair of spacecraft consists of a stack of high-performance silicon solid-state detectors in a telescope configuration, a collimation aperture, and a thick case surrounding the detector stack to shield the sensors from penetrating radiation and bremsstrahlung. The instrument points perpendicular to the spin axis of the spacecraft and measures high-energy electrons (up to ~20 MeV) with excellent sensitivity and also measures magnetospheric and solar protons to energies well above E=100 MeV. The instrument has a large geometric factor (g=0.2 cm2?sr) to get reasonable count rates (above background) at the higher energies and yet will not saturate at the lower energy ranges. There must be fast enough electronics to avert undue dead-time limitations and chance coincidence effects. The key goal for the REPT design is to measure the directional electron intensities (in the range 10?2–106 particles/cm2?s?sr?MeV) and energy spectra (ΔE/E~25 %) throughout the slot and outer radiation belt region. Present simulations and detailed laboratory calibrations show that an excellent design has been attained for the RBSP needs. We describe the engineering design, operational approaches, science objectives, and planned data products for REPT.  相似文献   

6.
We discuss a consolidation of determinations of the density of neutral interstellar H at the nose of the termination shock carried out with the use of various data sets, techniques, and modeling approaches. In particular, we focus on the determination of this density based on observations of H pickup ions on Ulysses during its aphelion passage through the ecliptic plane. We discuss in greater detail a novel method of determination of the density from these measurements and review the results from its application to actual data. The H density at TS derived from this analysis is equal to 0.087±0.022 cm?3, and when all relevant determinations are taken into account, the consolidated density is obtained at 0.09±0.022 cm?3. The density of H in CHISM based on literature values of filtration factor is then calculated at 0.16±0.04 cm?3.  相似文献   

7.
Dawn??s ion propulsion system (IPS) is the most advanced propulsion system ever built for a deep-space mission. Aside from the Mars gravity assist it provides all of the post-launch ??V required for the mission including the heliocentric transfer to Vesta, orbit capture at Vesta, transfer to various Vesta science orbits, escape from Vesta, the heliocentric transfer to Ceres, orbit capture at Ceres, and transfer to the different Ceres science orbits. The ion propulsion system provides a total ??V of nearly 11 km/s, comparable to the ??V provided by the 3-stage launch vehicle, and a total impulse of 1.2×107 N?s.  相似文献   

8.
The MICROSCOPE space mission aims at testing the Equivalence Principle (EP) with an accuracy of 10?15. The test is based on the precise measurement delivered by a differential electrostatic accelerometer on-board a drag-free microsatellite which includes two cylindrical test masses submitted to the same gravitational field and made of different materials. The experiment consists in testing the equality of the electrostatic acceleration applied to the masses to maintain them relatively motionless at a well-known frequency. This high precision experiment is compatible with only very little perturbations. However, aliasing arises from the finite time span of the measurement, and is amplified by measurement losses. These effects perturb the measurement analysis. Numerical simulations have been run to estimate the contribution of a perturbation at any frequency on the EP violation frequency and to test its compatibility with the mission specifications. Moreover, different data analysis procedures have been considered to select the one minimizing these effects taking into account the uncertainty about the frequencies of the implicated signals.  相似文献   

9.
We describe a test of the equivalence principle with quantum probe particles based on atom interferometry. For the measurement, a light pulse atom interferometer based on the diffraction of atoms from effective absorption gratings of light has been developed. A differential measurement of the Earth’s gravitational acceleration g for the two rubidium isotopes 85Rb and 87Rb has been performed, yielding a difference Δg/g=(1.2±1.7)×10?7. In addition, the dependence of the free fall on the relative orientation of the electron to the nuclear spin was studied by using atoms in two different hyperfine states. The determined difference in the gravitational acceleration is Δg/g=(0.4±1.2)×10?7. Within their experimental accuracy, both measurements are consistent with a free atomic fall that is independent from internal composition and spin orientation.  相似文献   

10.
The radio-metric tracking data received from the Pioneer 10 and 11 spacecraft from the distances between 20–70 astronomical units from the Sun has consistently indicated the presence of a small, anomalous, blue-shifted Doppler frequency drift that limited the accuracy of the orbit reconstruction for these vehicles. This drift was interpreted as a sunward acceleration of a P =(8.74±1.33)×10?10 m/s2 for each particular spacecraft. This signal has become known as the Pioneer anomaly; the nature of this anomaly is still being investigated. Recently new Pioneer 10 and 11 radio-metric Doppler and flight telemetry data became available. The newly available Doppler data set is much larger when compared to the data used in previous investigations and is the primary source for new investigation of the anomaly. In addition, the flight telemetry files, original project documentation, and newly developed software tools are now used to reconstruct the engineering history of spacecraft. With the help of this information, a thermal model of the Pioneers was developed to study possible contribution of thermal recoil force acting on the spacecraft. The goal of the ongoing efforts is to evaluate the effect of on-board systems on the spacecrafts’ trajectories and possibly identify the nature of this anomaly. Techniques developed for the investigation of the Pioneer anomaly are applicable to the New Horizons mission. Analysis shows that anisotropic thermal radiation from on-board sources will accelerate this spacecraft by ~41×10?10 m/s2. We discuss the lessons learned from the study of the Pioneer anomaly for the New Horizons spacecraft.  相似文献   

11.
The OSIRIS-REx Visible and Infrared Spectrometer (OVIRS) is a point spectrometer covering the spectral range of 0.4 to 4.3 microns (25,000–2300 cm?1). Its primary purpose is to map the surface composition of the asteroid Bennu, the target asteroid of the OSIRIS-REx asteroid sample return mission. The information it returns will help guide the selection of the sample site. It will also provide global context for the sample and high spatial resolution spectra that can be related to spatially unresolved terrestrial observations of asteroids. It is a compact, low-mass (17.8 kg), power efficient (8.8 W average), and robust instrument with the sensitivity needed to detect a 5% spectral absorption feature on a very dark surface (3% reflectance) in the inner solar system (0.89–1.35 AU). It, in combination with the other instruments on the OSIRIS-REx Mission, will provide an unprecedented view of an asteroid’s surface.  相似文献   

12.
The NASA Radiation Belt Storm Probes (RBSP) mission addresses how populations of high energy charged particles are created, vary, and evolve in space environments, and specifically within Earth’s magnetically trapped radiation belts. RBSP, with a nominal launch date of August 2012, comprises two spacecraft making in situ measurements for at least 2 years in nearly the same highly elliptical, low inclination orbits (1.1×5.8 RE, 10°). The orbits are slightly different so that 1 spacecraft laps the other spacecraft about every 2.5 months, allowing separation of spatial from temporal effects over spatial scales ranging from ~0.1 to 5 RE. The uniquely comprehensive suite of instruments, identical on the two spacecraft, measures all of the particle (electrons, ions, ion composition), fields (E and B), and wave distributions (d E and d B) that are needed to resolve the most critical science questions. Here we summarize the high level science objectives for the RBSP mission, provide historical background on studies of Earth and planetary radiation belts, present examples of the most compelling scientific mysteries of the radiation belts, present the mission design of the RBSP mission that targets these mysteries and objectives, present the observation and measurement requirements for the mission, and introduce the instrumentation that will deliver these measurements. This paper references and is followed by a number of companion papers that describe the details of the RBSP mission, spacecraft, and instruments.  相似文献   

13.
The 2018 InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) Mission has the mission goal of providing insitu data for the first measurement of the geothermal heat flow of Mars. The Heat Flow and Physical Properties Package (HP3) will take thermal conductivity and thermal gradient measurements to approximately 5 m depth. By necessity, this measurement will be made within a few meters of the lander. This means that thermal perturbations from the lander will modify local surface and subsurface temperature measurements. For HP3’s sensitive thermal gradient measurements, this spacecraft influence will be important to model and parameterize. Here we present a basic 3D model of thermal effects of the lander on its surroundings. Though lander perturbations significantly alter subsurface temperatures, a successful thermal gradient measurement will be possible in all thermal conditions by proper (\(>3~\mbox{m}\) depth) placement of the heat flow probe.  相似文献   

14.
The SEIS (Seismic Experiment for Interior Structures) instrument on board the InSight mission to Mars is the critical instrument for determining the interior structure of Mars, the current level of tectonic activity and the meteorite flux. Meeting the performance requirements of the SEIS instrument is vital to successfully achieve these mission objectives. The InSight noise model is a key tool for the InSight mission and SEIS instrument requirement setup. It will also be used for future operation planning. This paper presents the analyses made to build a model of the Martian seismic noise as measured by the SEIS seismometer, around the seismic bandwidth of the instrument (from 0.01 Hz to 1 Hz). It includes the instrument self-noise, but also the environment parameters that impact the measurements. We present the general approach for the model determination, the environment assumptions, and we analyze the major and minor contributors to the noise model.  相似文献   

15.
The New Horizons (NH) Radio Science Experiment, REX, is designed to determine the atmospheric state at the surface of Pluto and in the lowest few scale heights. Expected absolute accuracies in n, p, and T at the surface are 4?1019 m?3, 0.1 Pa, and 3 K, respectively, obtained by radio occultation of a 4.2 cm-λ signal transmitted from Earth at 10–30 kW and received at the NH spacecraft. The threshold for ionospheric observations is roughly 2?109 e??m?3. Radio occultation experiments are planned for both Pluto and Charon, but the level of accuracy for the neutral gas is expected to be useful at Pluto only. REX will also measure the nightside 4.2 cm-λ thermal emission from Pluto and Charon during the time NH is occulted. At Pluto, the thermal scan provides about five half-beams across the disk; at Charon, only disk integrated values can be obtained. A combination of two-way tracking and occultation signals will determine the Pluto system mass to about 0.01 percent, and improve the Pluto–Charon mass ratio. REX flight equipment augments the NH radio transceiver used for spacecraft communications and tracking. Implementation of REX required realization of a new CIC-SCIC signal processing algorithm; the REX hardware implementation requires 1.6 W, and has mass of 160 g in 520 cm3. Commissioning tests conducted after NH launch demonstrate that the REX system is operating as expected.  相似文献   

16.
临近空间无人飞行器多余度容错导航系统设计   总被引:1,自引:1,他引:0  
临近空间无人飞行器导航系统的故障直接影响到飞行器的任务执行和飞行安全,因此必须能够长时间地保持稳定性和精确性,为达到此目的必须设计由惯性导航、卫星导航等多种导航传感器组成的多源多余度容错导航系统,提高系统的可靠性。针对临近空间飞行器制导控制对导航信息的需求,提出了一种标准的三余度导航系统架构,并设计了采用新型加权平均表决子算法,具备故障检测和隔离以及故障重构功能的容错重构算法,构建了适用于临近空间无人飞行器的多余度容错导航系统,通过实测试验数据仿真验证了容错导航系统的性能,展示了系统一次故障工作的故障容错能力。所研究内容也可被其他类型的无人飞行器借鉴和参考。  相似文献   

17.
An Engineering Radiation Monitor (ERM) has been developed as a supplementary spacecraft subsystem for NASA’s Radiation Belt Storm Probes (RBSP) mission. The ERM will monitor total dose and deep dielectric charging at each RBSP spacecraft in real time. Configured to take the place of spacecraft balance mass, the ERM contains an array of eight dosimeters and two buried conductive plates. The dosimeters are mounted under covers of varying shielding thickness to obtain a dose-depth curve and characterize the electron and proton contributions to total dose. A 3-min readout cadence coupled with an initial sensitivity of ~0.01 krad should enable dynamic measurements of dose rate throughout the 9-hr RBSP orbit. The dosimeters are Radiation-sensing Field Effect Transistors (RadFETs) and operate at zero bias to preserve their response even when powered off. The range of the RadFETs extends above 1000 krad to avoid saturation over the expected duration of the mission. Two large-area (~10 cm2) charge monitor plates set behind different thickness covers will measure the dynamic currents of weakly-penetrating electrons that can be potentially hazardous to sensitive electronic components within the spacecraft. The charge monitors can handle large events without saturating (~3000 fA/cm2) and provide sufficient sensitivity (~0.1 fA/cm2) to gauge quiescent conditions. High time-resolution (5 s) monitoring allows detection of rapid changes in flux and enables correlation of spacecraft anomalies with local space weather conditions. Although primarily intended as an engineering subsystem to monitor spacecraft radiation levels, real-time data from the ERM may also prove useful or interesting to a larger community.  相似文献   

18.
The HOPE mass spectrometer of the Radiation Belt Storm Probes (RBSP) mission (renamed the Van Allen Probes) is designed to measure the in situ plasma ion and electron fluxes over 4π sr at each RBSP spacecraft within the terrestrial radiation belts. The scientific goal is to understand the underlying physical processes that govern the radiation belt structure and dynamics. Spectral measurements for both ions and electrons are acquired over 1 eV to 50 keV in 36 log-spaced steps at an energy resolution ΔE FWHM/E≈15 %. The dominant ion species (H+, He+, and O+) of the magnetosphere are identified using foil-based time-of-flight (TOF) mass spectrometry with channel electron multiplier (CEM) detectors. Angular measurements are derived using five polar pixels coplanar with the spacecraft spin axis, and up to 16 azimuthal bins are acquired for each polar pixel over time as the spacecraft spins. Ion and electron measurements are acquired on alternate spacecraft spins. HOPE incorporates several new methods to minimize and monitor the background induced by penetrating particles in the harsh environment of the radiation belts. The absolute efficiencies of detection are continuously monitored, enabling precise, quantitative measurements of electron and ion fluxes and ion species abundances throughout the mission. We describe the engineering approaches for plasma measurements in the radiation belts and present summaries of HOPE measurement strategy and performance.  相似文献   

19.
The NASA Juno mission includes a six-channel microwave radiometer system (MWR) operating in the 1.3–50 cm wavelength range in order to retrieve abundances of ammonia and water vapor from the microwave signature of Jupiter (see Janssen et al. 2016). In order to plan observations and accurately interpret data from such observations, over 6000 laboratory measurements of the microwave absorption properties of gaseous ammonia, water vapor, and aqueous ammonia solution have been conducted under simulated Jovian conditions using new laboratory systems capable of high-precision measurement under the extreme conditions of the deep atmosphere of Jupiter (up to 100 bars pressure and 505 K temperature). This is one of the most extensive laboratory measurement campaigns ever conducted in support of a microwave remote sensing instrument. New, more precise models for the microwave absorption from these constituents have and are being developed from these measurements. Application of these absorption properties to radiative transfer models for the six wavelengths involved will provide a valuable planning tool for observations, and will also make possible accurate retrievals of the abundance of these constituents during and after observations are conducted.  相似文献   

20.
The findings of Deep Impact on the structure and composition of Tempel-1 are compared with our experimental results on large (20 cm diameter and up to 10 cm high) samples of gas-laden amorphous ice which does not contain dust. The mechanical ~tensile strength inferred for Tempel-1: up to 12 kPa is close to our experimental findings of 2–4 kPa. This means that Tempel-1 is as fluffy as our very fluffy, talcum like, ice sample. The thermal inertia: 30<I<100 W?K?1?m?2?s1/2 is close to our value of 80. The density of 350±250 kg?m?3, is close to our value of 250–300 kg?m?3, taking into account an ice/silicate ratio of 1 in the comet, while we study pure ice. Surface morphological features, such as non-circular depressions and chaotic terrain, were observed in our experiments. The only small increase in the gas/water vapor ratio pre- and post-impact, suggest that in the area excavated by the impactor, the 135 K front did not penetrate deeper than a few meters. Altogether, the agreement between the findings of Deep Impact and our experimental results point to a loose agglomerate of ice grains (with a silicate-organic core), which was formed by a very gentle aggregation of the ice grains, without compaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号