首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Dynamics Analysis of Close-coupling Multiple Helicopters System   总被引:1,自引:0,他引:1  
The particularity and practicality of harmony operations of close-coupling multiple helicopters indicate that the researches on it are urgent and necessary, Using the model that describes two hovering helicopters carrying one heavy load, an inertia coordinate system and body coordinate systems of each sub-system are established. A nonlinear force model is established too. The equilibrium computation results can be regarded as the reference control inputs of the flight control system under hovering or low-speed flight condition. After the establishment of a translation kinematics model and a posture kinematics model, a coupling dynamics model of the multiple helicopter system is set up. The results can also be regarded as the base to analyze stabilization and design a controller for a close-coupling multiple helicopters harmony operation system.  相似文献   

2.
With the objective of reducing the flight cost and the amount of polluting emissions released in the atmosphere, a new optimization algorithm considering the climb, cruise and descent phases is presented for the reference vertical flight trajectory. The selection of the reference vertical navigation speeds and altitudes was solved as a discrete combinatory problem by means of a graphtree passing through nodes using the beam search optimization technique. To achieve a compromise between the execution time and the algorithm's ability to find the global optimal solution, a heuristic methodology introducing a parameter called ‘‘optimism coefficient was used in order to estimate the trajectory's flight cost at every node. The optimal trajectory cost obtained with the developed algorithm was compared with the cost of the optimal trajectory provided by a commercial flight management system(FMS). The global optimal solution was validated against an exhaustive search algorithm(ESA), other than the proposed algorithm. The developed algorithm takes into account weather effects, step climbs during cruise and air traffic management constraints such as constant altitude segments, constant cruise Mach, and a pre-defined reference lateral navigation route. The aircraft fuel burn was computed using a numerical performance model which was created and validated using flight test experimental data.  相似文献   

3.
Air-breathing hypersonic vehicles (HSVs) are typically characterized by interactions of elasticity, propulsion and rigid-body flight dynamics, which may result in intractable aeroservoelastic problem. When canard is added, this problem would be even intensified by the introduction of low-frequency canard pivot mode. This paper concerns how the aeroservoelastic stability of a canard-configured HSV is affected by the pivot stiffnesses of all-moveable horizontal tail (HT) and canard. A wing/pivot system model is developed by considering the pivot torsional flexibility, fuselage vibration, and control input. The governing equations of the aeroservoelastic system are established by combining the equations of rigid-body motion, elastic fuselage model, wing/pivot system models and actuator dynamics. An unsteady aerodynamic model is developed by steady Shock-Expansion theory with an unsteady correction using local piston theory. A baseline controller is given to provide approximate inflight characteristics of rigid-body modes. The vehicle is trimmed for equilibrium state, around which the linearized equations are derived for stability analysis. A comparative study of damping ratios, closed-loop poles and responses are conducted with varying controller gains and pivot stiffnesses. Available bandwidth for control design is discussed and feasible region for pivot stiffnesses of HT and canard is given.  相似文献   

4.
Intelligent modeling and identification of aircraft nonlinear flight   总被引:2,自引:2,他引:0  
In this paper, a new approach has been proposed to identify and model the dynamics of a highly maneuverable fighter aircraft through artificial neural networks(ANNs). In general, aircraft flight dynamics is considered as a nonlinear and coupled system whose modeling through ANNs, unlike classical approaches, does not require any aerodynamic or propulsion information and a few flight test data seem sufficient. In this study, for identification and modeling of the aircraft dynamics, two known structures of internal and external recurrent neural networks(RNNs) and a proposed structure called hybrid combined recurrent neural network have been used and compared.In order to improve the training process, an appropriate evolutionary method has been applied to simultaneously train and optimize the parameters of ANNs. In this research, it has been shown that six ANNs each with three inputs and one output, trained by flight test data, can model the dynamic behavior of the highly maneuverable aircraft with acceptable accuracy and without any priori knowledge about the system.  相似文献   

5.
《中国航空学报》2016,(5):1313-1325
This paper proposes an active fault-tolerant control strategy for an aircraft with dissim-ilar redundant actuation system (DRAS) that has suffered from vertical tail damage. A damage degree coefficient based on the effective vertical tail area is introduced to parameterize the damaged flight dynamic model. The nonlinear relationship between the damage degree coefficient and the corresponding stability derivatives is considered. Furthermore, the performance degradation of new input channel with electro-hydrostatic actuator (EHA) is also taken into account in the dam-aged flight dynamic model. Based on the accurate damaged flight dynamic model, a composite method of linear quadratic regulator (LQR) integrating model reference adaptive control (MRAC) is proposed to reconfigure the fault-tolerant control law. The numerical simulation results validate the effectiveness of the proposed fault-tolerant control strategy with accurate flight dynamic model. The results also indicate that aircraft with DRAS has better fault-tolerant control ability than the traditional ones when the vertical tail suffers from serious damage.  相似文献   

6.
In order to provide accurate launching pitching angular velocity(LPAV) for the exterior trajectory optimization design, multi-flexible body dynamics(MFBD) technology is presented to study the changing law of LPAV of the rotating missile based on spiral guideway. An MFBD virtual prototype model of the rotating missile launching system is built using multi-body dynamics modeling technology based on the built flexible body models of key components and the special force model.The built model is verified with the frequency spectrum analysis. With the flexible body contact theory and nonlinear theory of MFBD technology, the research is conducted on the influence of a series of factors on LPAV, such as launching angle change, clearance between launching canister and missile,thrust change, thrust eccentricity and mass eccentricity, etc. Through this research, some useful values of the key design parameters which are difficult to be measured in physical tests are obtained. Finally,a simplified mathematical model of the changing law of LPAV is presented through fitting virtual test results using the linear regression method and verified by physical flight tests. The research results have important significance for the exterior trajectory optimization design.  相似文献   

7.
This article presents a complete nonlinear controller design for a class of spin-stabilized canard-controlled projectiles.Uniformly ultimate boundedness and tracking are achieved,exploiting a heavily coupled,bounded uncertain and highly nonlinear model of longitudinal and lateral dynamics.In order to estimate unmeasurable states,an observer is proposed for an augmented multiple-input-multiple-output(MIMO) nonlinear system with an adaptive sliding mode term against the disturbances.Under the frame of a backstepping design,an adaptive sliding mode output-feedback dynamic surface control(DSC) approach is derived recursively by virtue of the estimated states.The DSC technique is adopted to overcome the problem of ‘‘explosion of complexity" and relieve the stress of the guidance loop.It is proven that all signals of the MIMO closed-loop system,including the observer and controller,are uniformly ultimately bounded,and the tracking errors converge to an arbitrarily small neighborhood of the origin.Simulation results for the observer and controller are provided to illustrate the feasibility and effectiveness of the proposed approach.  相似文献   

8.
Manned multi-rotor electric Vertical Takeoff and Landing(eVTOL) aircraft is prone to actuator saturation due to its weak yaw control efficiency. To address this inherent problem, a rotor cross-tilt configuration is applied in this paper, with an optimization method proposed to improve the overall control efficiency of the vehicle. First, a flight dynamics model of a 500-kg manned multi-rotor eVTOL aircraft is established. The accuracy of the co-axial rotor model is verified using a single arm te...  相似文献   

9.
This paper presents a simple and useful modeling method to acquire a dynamics model of an aerial vehicle containing unknown parameters using mechanism modeling,and then to design different identifcation experiments to identify the parameters based on the sources and features of its unknown parameters.Based on the mathematical model of the aerial vehicle acquired by modeling and identifcation,a design for the structural parameters of the attitude control system is carried out,and the results of the attitude control flaps are verifed by simulation experiments and flight tests of the aerial vehicle.Results of the mathematical simulation and flight tests show that the mathematical model acquired using parameter identifcation is comparatively accurate and of clear mechanics,and can be used as the reference and basis for the structural design.  相似文献   

10.
Aircraft icing has long been a plague to aviation for its serious threat to flight safety. Even though lots of methods for anti-icing have been in use or studied for quite a long time, new methods are still in great demand for both civil and military aircraft. The current study in this paper uses widely used Dielectric Barrier Discharge(DBD) plasma actuation to anti-ice on a NACA0012 airfoil model with a chord length of 53.5 cm in a closed-circuit icing wind tunnel. An actuator was installed at the leading edge of the airfoil model, and actuated by a pulsed low-temperature plasma power source. The actuator has two types of layout, a striped electrode layout and a meshy electrode layout.The ice accretion process or anti-icing process was recorded by a CCD camera and an infrared camera. Instantaneous pictures and infrared contours show that both types of DBD plasma actuators have the ability for anti-ice under a freestream velocity of 90 m/s, a static temperature of -7℃,an Median Volume droplet Diameter(MVD) of 20 lm, and an Liquid Water Content(LWC) of 0.5 g/m~3. The detected variations of temperatures with time at specific locations reveal that the temperatures oscillate for some time after spraying at first, and then tend to be nearly constant values.This shows that the key point of the anti-icing mechanism with DBD plasma actuation is to achieve a thermal equilibrium on the model surface. Besides, the power consumption in the anti-icing process was estimated in this paper by Lissajous figures measured by an oscilloscope, and it is lower than those of existing anti-icing methods. The experimental results presented in this paper indicate that the DBD plasma anti-icing method is a promising technique in the future.  相似文献   

11.
《中国航空学报》2016,(5):1302-1312
The acceleration autopilot design for skid-to-turn (STT) missile faces a great challenge owing to coupling effect among planes, variation of missile velocity and its parameters, inexistence of a complete state vector, and nonlinear aerodynamics. Moreover, the autopilot should be designed for the entire flight envelope where fast variations exist. In this paper, a design of inte-grated roll-pitch-yaw autopilot based on global fast terminal sliding mode control (GFTSMC) with a partial state nonlinear observer (PSNLO) for STT nonlinear time-varying missile model, is employed to address these issues. GFTSMC with a novel sliding surface is proposed to nullify the integral error and the singularity problem without application of the sign function. The pro-posed autopilot consisting of two-loop structure, controls STT maneuver and stabilizes the rolling with a PSNLO in order to estimate the immeasurable states as an output while its inputs are missile measurable states and control signals. The missile model considers the velocity variation, gravity effect and parameters’ variation. Furthermore, the environmental conditions’ dynamics are mod-eled. PSNLO stability and the closed loop system stability are studied. Finally, numerical simula-tion is established to evaluate the proposed autopilot performance and to compare it with existing approaches in the literature.  相似文献   

12.
Since ambient conditions vary in a wide range within the full flight envelope, the existing piecewise linear model (PLM), which is based on sea-level static condition with use of corrected parameters for other points in the flight envelope, cannot meet the accuracy for replacing the nonlinear model. To obtain more accurate linear models, a method of partitioning the flight envelope over a grid of Mach number and altitude boxes was suggested. Then, a set of linear models for a given operating condition was selected by picking the nearest (Mach number, altitude) box in the flight envelope. Through the selected set of linear models, interpolating for power level based on a weighted sum of corrected rotor speeds can obtain a linear model with acceptable accuracy. Simulation results of different points within the full flight envelope showed that the maximum error between nonlinear model and the existing PLM was more than 50%, while the maximum error between nonlinear model and the improved PLM was within 8%. It is concluded that the improved PLM performs accurately, especially under the non-standard conditions. In addition, the improved PLM can satisfy the real-time requirement better than the existing PLM.   相似文献   

13.
《中国航空学报》2016,(2):335-345
Studied in this paper is dynamic modeling and simulation application of the receiver aircraft with the time-varying mass and inertia property in an integrated simulation environment which includes two other significant factors, i.e., a hose–drogue assembly dynamic model with the variable-length property and the wind effect due to the tanker's trailing vortices. By extending equations of motion of a fixed weight aircraft derived by Lewis et al., a new set of equations of motion for a receiver in aerial refueling is derived. The equations include the time-varying mass and inertia property due to fuel transfer and the fuel consumption by engines, and the fuel tanks have a rectangle shape rather than a mass point. They are derived in terms of the translational and rotational position and velocity of the receiver with respect to an inertial reference frame. A linear quadratic regulator(LQR) controller is designed based on a group of linearized equations under the initial receiver mass condition. The equations of motion of the receiver with a LQR controller are implemented in the integrated simulation environment for autonomous approaching and station-keeping of the receiver in simulations.  相似文献   

14.
To effectively estimate the unknown aerodynamic parameters from the aircraft’s flight data,this paper proposes a novel aerodynamic parameter estimation method incorporating a stacked Long Short-Term Memory(LSTM) network model and the Levenberg-Marquardt(LM)method.The stacked LSTM network model was designed to realize the aircraft dynamics modeling by utilizing a frame of nonlinear functional mapping based entirely on the measured input-output data of the aircraft system without requiring explici...  相似文献   

15.
The analysis of the passive rotation feature of a micro Flapping Rotary Wing(FRW)applicable for Micro Air Vehicle(MAV) design is presented in this paper. The dynamics of the wing and its influence on aerodynamic performance of FRW is studied at low Reynolds number(~10~3).The FRW is modeled as a simplified system of three rigid bodies: a rotary base with two flapping wings. The multibody dynamic theory is employed to derive the motion equations for FRW. A quasi-steady aerodynamic model is utilized for the calculation of the aerodynamic forces and moments. The dynamic motion process and the effects of the kinematics of wings on the dynamic rotational equilibrium of FWR and the aerodynamic performances are studied. The results show that the passive rotation motion of the wings is a continuous dynamic process which converges into an equilibrium rotary velocity due to the interaction between aerodynamic thrust, drag force and wing inertia. This causes a unique dynamic time-lag phenomena of lift generation for FRW, unlike the normal flapping wing flight vehicle driven by its own motor to actively rotate its wings. The analysis also shows that in order to acquire a high positive lift generation with high power efficiency and small dynamic time-lag, a relative high mid-up stroke angle within 7–15° and low mid-down stroke angle within -40° to -35° are necessary. The results provide a quantified guidance for design option of FRW together with the optimal kinematics of motion according to flight performance requirement.  相似文献   

16.
To satisfy the validation requirements of flight control law for advanced aircraft,a wind tunnel based virtual flight testing has been implemented in a low speed wind tunnel.A 3-degree-offreedom gimbal,ventrally installed in the model,was used in conjunction with an actively controlled dynamically similar model of aircraft,which was equipped with the inertial measurement unit,attitude and heading reference system,embedded computer and servo-actuators.The model,which could be rotated around its center of gravity freely by the aerodynamic moments,together with the flow field,operator and real time control system made up the closed-loop testing circuit.The model is statically unstable in longitudinal direction,and it can fly stably in wind tunnel with the function of control augmentation of the flight control laws.The experimental results indicate that the model responds well to the operator's instructions.The response of the model in the tests shows reasonable agreement with the simulation results.The difference of response of angle of attack is less than 0.5°.The effect of stability augmentation and attitude control law was validated in the test,meanwhile the feasibility of virtual flight test technique treated as preliminary evaluation tool for advanced flight vehicle configuration research was also verified.  相似文献   

17.
In this paper, a new method is developed to model dependent failure behavior among failure mechanisms. Unlike the existing methods, the developed method models the root cause of the dependency explicitly, so that a deterministic model, rather than a probabilistic one, can be established. Three steps comprise the developed method. First, physics-of-failure(PoF) models are utilized to model each failure mechanism. Then, interactions among failure mechanisms are modeled as a combination of three basic relations, competition, superposition and coupling. This is the reason why the method is referred to as ‘‘compositional method". Finally, the PoF models and the interaction model are combined to develop a deterministic model of the dependent failure behavior. As a demonstration, the method is applied on an actual spool and the developed failure behavior model is validated by a wear test. The result demonstrates that the compositional method is an effective way to model dependent failure behavior.  相似文献   

18.
On developing data-driven turbulence model for DG solution of RANS   总被引:1,自引:0,他引:1  
High-order Discontinuous Galerkin(DG) methods have been receiving more and more attentions in the area of Computational Fluid Dynamics(CFD) because of their high-accuracy property. However, it is still a challenge to obtain converged solution rapidly when solving the Reynolds Averaged Navier–Stokes(RANS) equations since the turbulence models significantly increase the nonlinearity of discretization system. The overall goal of this research is to develop an Artificial Neural Networks(ANNs) model with low complexity acting as an algebraic turbulence model to estimate the turbulence eddy viscosity for RANS. The ANN turbulence model is off-line trained using the training data generated by the widely used Spalart–Allmaras(SA) turbulence model before the Optimal Brain Surgeon(OBS) is employed to determine the relevancy of input features.Using the selected relevant features, a fully connected ANN model is constructed. The performance of the developed ANN model is numerically tested in the framework of DG for RANS, where the‘‘DG+ANN" method provides robust and steady convergence compared to the ‘‘DG+SA" method. The results demonstrate the promising potential to develop a general turbulence model based on artificial intelligence in the future given the training data covering a large rang of flow conditions.  相似文献   

19.
Wu Wei 《中国航空学报》2014,27(6):1363-1372
A comprehensive method based on system identification theory for helicopter flight dynamics modeling with rotor degrees of freedom is developed. A fully parameterized rotor flapping equation for identification purpose is derived without using any theoretical model, so the confidence of the identified model is increased, and then the 6 degrees of freedom rigid body model is extended to 9 degrees of freedom high-order model. Bode sensitivity function is derived to increase the accuracy of frequency spectra calculation which influences the accuracy of model parameter identification. Then a frequency domain identification algorithm is established. Acceleration technique is developed furthermore to increase calculation efficiency, and the total identification time is reduced by more than 50% using this technique. A comprehensive two-step method is established for helicopter high-order flight dynamics model identification which increases the numerical stability of model identification compared with single step algorithm. Application of the developed method to identify the flight dynamics model of BO 105 helicopter based on flight test data is implemented. A comparative study between the high-order model and rigid body model is performed at last. The results show that the developed method can be used for helicopter high-order flight dynamics model identification with high accuracy as well as efficiency, and the advantage of identified high-order model is very obvious compared with low-order model.  相似文献   

20.
A fuzzy robust nonlinear controller for hydraulic rotary actuators in flight motion simulators is proposed. Compared with other three-order models of hydraulic rotary actuators, the proposed controller based on first-order nonlinear model is more easily applied in practice, whose control law is relatively simple. It not only does not need high-order derivative of desired command,but also does not require the feedback signals of velocity, acceleration and jerk of hydraulic rotary actuators. Another advantage is that it does not rely on any information of friction, inertia force and external disturbing force/torque, which are always difficult to resolve in flight motion simulators. Due to the special composite vane seals of rectangular cross-section and goalpost shape used in hydraulic rotary actuators, the leakage model is more complicated than that of traditional linear hydraulic cylinders. Adaptive multi-input single-output(MISO) fuzzy compensators are introduced to estimate nonlinear uncertain functions about leakage and bulk modulus. Meanwhile, the decomposition of the uncertainties is used to reduce the total number of fuzzy rules. Different from other adaptive fuzzy compensators, a discontinuous projection mapping is employed to guarantee the estimation process to be bounded. Furthermore, with a sufficient number of fuzzy rules, the controller theoretically can guarantee asymptotic tracking performance in the presence of the above uncertainties, which is very important for high-accuracy tracking control of flight motion simulators.Comparative experimental results demonstrate the effectiveness of the proposed algorithm, which can guarantee transient performance and better final accurate tracking in the presence of uncertain nonlinearities and parametric uncertainties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号