首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
陀螺电机转子动平衡采用的人工打孔去重存在效率低、去重精度低、金属碎屑残留等问题,严重制约了陀螺的生产效率和精度。而激光去重具有去重精度高、无接触、效率高等优点,在精密去重领域应用前景广泛。采用脉冲光纤激光器对陀螺电机转子动平衡进行了激光精密去重技术研究,探讨了激光频率、振镜扫描速度等参数对去重效果的影响规律,优化了激光去重工艺参数。当激光功率为30W、振镜扫描速度为1000mm/s时,去重盲孔效果最好。针对激光去重盲孔存在残留物问题,提出了激光二次抛光去除残留物的方法,研究了激光功率、振镜扫描速度对残留物去除效果影响规律,优化了激光抛光工艺参数。激光去重盲孔经二次扫描抛光后,盲孔表面残留物去除干净,满足陀螺电机转子的精密去重要求。  相似文献   

2.
一、概述: 航空陀螺马达由于制造时质量分布的不均匀,当高速旋转时,由不平衡引起振动以及造成轴承磨损等,这在实际上是不允许的。为此,首先要在工作转速时测出其不平衡量的大小和位置,然后将多余的部分去除掉。一种办法是手动去除,即停机将马达拿下用钻头去重,而我们研制的激光动平衡机,是将电气测量线路测出的不平衡量的大小和角位置信号,通过控制线路,控制产生激光束,在陀螺高速旋转情况下实现激光自动去重。 (一) 整机原理方框图:见图1  相似文献   

3.
激光动平衡装置包括使物体旋转和提供物体不平衡量的大小和相位的指示设备。采用激光装置照射到旋转物体上以去除材料而达到平衡。供给改变冲击在物体上的激光位置与中断冲击的设置,以便达到在所要求平衡的物体的某一位置去除一定量的物体材料。  相似文献   

4.
激光焊接机和打孔机已经脱离了试验室阶段,并作为工业工具机而得到了接收,它们的应用已变得越来越明显了。这种最初设计供焊接和穿孔用的激光机床,可用作从陀螺转子或其它精密转动部件上去除金属,达到高精度平衡的目的。这种技术改变了用人工方法平衡所耗费的时间。  相似文献   

5.
近来为了提高平衡转子时的精度和生产率,制造了以电火花、电子束、电化学、激光法等为基础的设备,用以从旋转的转子表面上去除不平衡质量。莫斯科航空工艺研究所在几年时间内进行了理论上和实验上的研究,最后研制出利用激光的平衡设备。  相似文献   

6.
微晶玻璃加工特性及机理研究   总被引:1,自引:0,他引:1  
孙志焱  粱敏 《惯导与仪表》2002,(2):56-59,63
本文结合激光陀螺生产实际,针对激光陀螺腔体的材料——微晶玻璃的加工特性及机理进行了探讨。  相似文献   

7.
细长柔性转子高速动平衡方法   总被引:11,自引:1,他引:10  
提出了一种通过平衡辅助工装——平衡卡箍来进行细长柔性转子高速动平衡的新工艺方法。按照设计准则设计加工了一组精密平衡卡箍并用有限元法进行了强度校核,卡箍的验证考核试验在两个模拟轴上完成,结果表明:卡箍的平衡性能良好,对模拟轴的临界转速和振动特性的影响甚微,在此基础上完成了装机动力涡轮转子的高速动平衡试验,效果良好。   相似文献   

8.
本文叙述从旋转物体,如陀螺转子上去除材料实现陀螺转子动态平衡的装置。应用激光束去除材料,为此目的,使激光的点火时间须与旋转物体一给定位置相应,以使激光束聚集在要去除材料的那部分。激光器备有第一和第二两套电源设备,从接触旋转物体的传感器上传来控制信号后,第一充电网络激发激光器至阈值状态。激光器达到阈值状态后,从控制信号接收的延迟一段时间的触发信号,使第二充电网络自动地连接在激光器上,进一步激发激光器。延迟时间足以使激光器达到阈值状态。第二充电网络时间常数小、电压高,因此激光脉冲窄,对从旋转物体上去除材料部位提供小弧度精确控制。  相似文献   

9.
通过对激光陀螺腔体深小孔钻削过程的材料去除机理分析和试验验证,给出了孔壁缺陷的评价方法。研究了某型激光陀螺腔体深小孔钻削过程所产生的孔壁缺陷层深度,并进一步研究了深小孔去除缺陷的工艺,通过超声振动研磨和复合抛光技术,实现了腔体内表面的精密加工。  相似文献   

10.
一、光纤陀螺——研制中的陀螺这是继激光陀螺问世后正在研制中的崭新陀螺。众所周知激光陀螺的体积小,重量轻,而它的体积更小,重量更轻,没有转动部件,引起了世界各国的工业和军事部门的注目。有关科研部门在此研制过程中都力争上游。据报导我国上海科技大学与安徽光机所联合研制的  相似文献   

11.
目前激光陀螺捷联惯性导航系统获得了广泛的应用。为减少激光陀螺的不灵敏区域,常常使用机械机座。这种技术处理在某种程度上降低了激光陀螺的品质,如在安装有捷联惯性导航系统灵敏元件组合的机座上装置陀螺,将伴随发生一系列的问题。  相似文献   

12.
金属振动陀螺是一种低成本、 轻小型的新型固体波动陀螺,在战术级应用领域具有广大的应用前景.金属振动陀螺谐振子的频率分裂直接反映陀螺的性能指标,频率分裂可以通过机械调平的方式进行修正.对金属振动陀螺的调平方法进行了梳理和比较,提出了质量修正、刚度修正2种调平思路和增加、 去除材料等5种修正方法.通过对各种调平修正方法的比较,选择激光去重法对谐振子顶面进行质量调平修正,并进行实验验证.实验结果表明,该方法修正后,在保持品质因数基本不变的情况下,谐振子的频率分裂由5.3Hz降低到0.9Hz,陀螺的零偏稳定性由55(°)/h降低到6(°)/h,性能指标提高了1个数量级.  相似文献   

13.
近年来,随着航空、航天和航海技术的迅速发展,陀螺仪在精度、寿命、小型化以及可靠性等方面,均有了越来越高的要求。可以认为,这些要求得以实现,很大程度上取决于陀螺转子的精度。而高精度的陀螺转子必须是经过高精度动平衡的。然而,生产实践表明,现有动平衡设备,并不能完全适应这一要求,尤其是对微型陀螺转子,矛盾就更为突出。大概地讲,问题主要存在两个方面:(1)使用上缺乏通用性。这无论在经济效果上,或是在满足日益发展的科研生产急需上,均是美中不足的;(2)调整困难。因为目前使用的动  相似文献   

14.
本文分析了激光陀螺反射镜表面粗糙度对激光陀螺精度的影响,对激光陀螺反射镜超光滑表面加工方法进行了系列改进,显著提高了激光陀螺反射镜超光滑表面加工水平,对激光陀螺研制水平的提高有重要意义。  相似文献   

15.
激光陀螺在新型反舰导弹上的应用   总被引:4,自引:0,他引:4  
通过对激光陀螺工作原理的分析,总结了激光陀螺的性能特点,指出了现阶段激光陀螺存在的问题和今后发展的方向,对其在新一代反舰导弹上的应用做出了展望.  相似文献   

16.
闭锁效应是激光陀螺误差的主要来源之一,机抖激光陀螺采用机械抖动的方式使其工作在谐振状态下有效地减小了这一误差。为研究机抖激光陀螺的抖动特性,本文建立了该陀螺的有限元模型,对其抖动模态进行了仿真分析,并进行了扫频实验验证,结果表明该模型充分反映了系统的抖动动力学特性,合理可靠,为采用有限元方法进一步分析激光陀螺的振动特性奠定了基础,对提高激光陀螺的精度有着重要的意义。  相似文献   

17.
某涡桨发动机低压模拟转子的工作转速在弯曲临界转速以下,该转子出现了由不平衡引起振动超限,导致无法运行至工作转速的问题,本文针对上述问题进行动平衡试验研究。首先,在动平衡机上对低压模拟转子进行低速平衡,再结合柔性转子高速动平衡技术,在高速旋转试验器上完成了低压模拟转子的高速动平衡试验,动平衡试验后的转子振动明显降低,表现出了良好的振动特性,平衡效果显著。本文的研究为控制高转速下同类型航空发动机转子的振动提供了一种有效的途径,具有重要的工程应用价值。  相似文献   

18.
激光陀螺捷联惯性测量系统多采用机械抖动式激光陀螺,系统中各陀螺之间的抖动耦合会影响陀螺测量精度。如何减小陀螺之间的抖动耦合,是激光陀螺捷联惯性测量系统设计中的关键技术之一。三个正交激光陀螺组成的捷联惯性系统其频率配置已经有了许多研究,而有冗余安装陀螺的捷联系统其频率该如何配置还未有过系统的研究。本文以某型号五陀螺冗余配置的激光捷联惯组为研究对象,通过有限元软件对不同频率配置下陀螺之间的抖动耦合特性进行仿真分析,给出了五冗余配置激光捷联系统的抖动频率配置原则,在工程实践中,对捷联系统中陀螺的频率配置具有重要指导意义。  相似文献   

19.
近几年,激光陀螺在产品数字化、小型化方面有较好的发展,为其在军用领域和商用领域广泛应用打下坚实基础。纵观国内外发展情况,激光陀螺产品小型化发展进程,主要体现在其电路系统方面的改进。电路系统的发展主要经历了四个阶段:分立元件组成的控制系统,单片机构成的分立控制系统,高性能芯片构成的集成控制系统,单片集成的片上系统。在集成电路和数字处理技术发展的前提下,激光陀螺电路系统的研究也在逐步深入。本文揭示了激光陀螺电路系统的发展方向,这对国内激光陀螺产品的发展有着重要的参考意义,有助于推动激光陀螺数字化、小型化的发展。  相似文献   

20.
针对传统Allan方差法分析激光陀螺误差特性过程中,不能合理解释方差中部分噪声项出现负值的情况,而采用阻尼振荡的分析方法能够对此给出合理解释,却又损失了辨识精度的问题,提出了一种基于动态Allan方差法理论的改进Allan方差法。该方法将阻尼振荡模型与动态Allan方差模型相结合,使得辨识结果的分析过程更加合理。激光陀螺零偏误差的辨识与分析结果表明:改进Allan方差法的辨识结果精度略高些,在改进Allan方差的三维分析图中可以显示出零偏中存在的数据突变情况,能够反应激光陀螺误差的动态特性。因此,改进Allan方差法更适用于激光陀螺误差特性的分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号