首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 553 毫秒
1.
在耀斑伴随日冕物质抛射(CME)事件编目数据的基础上,进行太阳质子事件(SPE)匹配,构建研究数据集.利用Apriori算法挖掘SPE与耀斑级别、耀斑发生日面位置以及CME角宽度和速度的关联关系.结果表明:X级耀斑、全晕CME、高速(>1000km·-1) CME和日面西半球耀斑是最可能伴随质子事件的4种特征,其诱发质子事件概率依次为0.366,0.355,0.30,0.155.角宽度低于120°或速度低于400km·-1的CME产生质子事件的概率为0.高速CME产生质子事件的概率是低速(400~1000km·-1) CME的8.6倍,X级耀斑产生质子事件的概率是M级耀斑的6.2倍,日面西部耀斑产生质子事件的概率是日面东部耀斑概率的3.9倍,全晕CME产生太阳质子事件的概率是非全晕(120°~360°) CME的3.8倍.对太阳质子事件样本进行过采样处理,利用随机森林等5种典型有监督学习算法,构建了基于第23太阳活动周耀斑和CME特征的质子事件预测模型.结果表明,该预报模型的质子事件预测准确率、精确率和召回率均控制在91%以上.   相似文献   

2.
CME是非重现性地磁暴的诱因,通过对太阳耀斑爆发活动的特征与可能引起地磁活动的CME进行统计分析,发现太阳耀斑的强度、位置、持续时间以及耀斑所伴随的太阳质子事件和行星际高能质子通量的增长与CME的特征及可能产生的地磁扰动有着密切的关系.在对数据分析的基础上,建立了基于人工神经网络的预报模式,对太阳耀斑爆发活动所引起的地磁扰动的发生及Ap指数进行了预报,取得了较好的结果.   相似文献   

3.
根据WIND飞船的观测资料,讨论了2000年发生的南向磁场(BS)事件,分析了它们的源,发现12次事件中11次的源是日冕物质抛射(CME)。运用从地球向太阳时间倒推的方法和LASCO,EIT195A的观测资料,确定了这些CME。它们都是快速CME,伴有行星际激波,都具有晕状(Halo)形态,它们在日面上发生的位置是在一个不对称的区域内。还分析了5个强南向磁场(BS≥20nT)事件,发现它们的CME源,或者具有很高的能量,或者抛射方向正对地球,或者是具有叠加效应的CME系列,分析表明,在我们所讨论的太阳活动高年,大的行星际扰动和强地磁暴与高速流的联系并不密切。  相似文献   

4.
太阳高能粒子事件上升时间统计研究   总被引:1,自引:1,他引:0  
选取1997-2006年共66个较大的缓变型太阳高能粒子(SEP)事件, 分析了不同条件下太阳高能粒子通量廓线上升时间与源区日面经向分布之间的相关关系, 研究了日冕物质抛射(CME)和耀斑在SEP上升阶段的作用特点.统计结果表明,大SEP事件的源区主要分布在太阳西半球, 特别是磁足点东西两侧45°范围内; 在高速太阳风条件下, 低能通道的通量上升时间与日面相对经度有较好的相关性,即离磁足点越远, 上升时间越长,而高能通道相关性则不明显; 全晕状CME产生的SEP事件对应的上升时间与源区位置没有明显的相关性, 而部分晕状CME伴随的SEP事件则与二次拟合曲线符合很好.分析表明,在缓变型SEP事件的通量上升阶段, 耀斑加速过程起着重要作用,这在部分晕状CME伴随的SEP事件中尤为显著.   相似文献   

5.
太阳是一个异常活跃的天体,其爆发过程会对地球周围空间环境产生重要影响. 通常,单个高能质子即足以引起飞行器中微电子器件出现异常,因此太阳质子事件预报是空间天气预报的重要内容. 关于预报模型的参数选择尚有值得改进之处. 研究认为,Ⅰ型噪暴与日冕加热磁重联具有密切关系,可以作为预报参数. 通过两个典型太阳爆发事件的详细资料分析,说明了Ⅰ型噪暴与质子事件及CME的相关性.   相似文献   

6.
CME会影响近地空间环境,带来地磁扰动,预报其能否到达地球及何时到达地球具有重要的应用意义.受观测能力限制,通常根据CME在太阳附近的日冕仪投影观测信息,利用锥模型拟合得到三维参数,进而以经验预报或代入行星际传播过程模拟,预报CME的对地有效性.在拟合过程中,可以采取不同时刻日冕仪观测数据作为输入,也可以选择是否限定CME发生在耀斑附近进行拟合,这有可能得到截然不同的CME三维参数,从而严重影响CME的传播预报结果.本文选取一个全晕CME事件和一个偏晕CME事件,分析了不同的数据输入和拟合方式带来的CME三维参数拟合结果的变化,评估其对CME传播预报的影响.研究发现,不同的数据源和拟合方式得到的CME三维参数有较大差异,影响了CME对地有效性的预报.后续有必要通过统计分析,评估采用哪些输入数据、哪种拟合方式,对CME对地有效性的预报更准确.   相似文献   

7.
基于1996-2005年88个引起重大地磁暴的CME(日冕物质抛射)事件、1996-2000年的47个CME事件以及1997-2002年的29个全晕状CME事件,结合ACE卫星在1AU处的太阳风和行星际磁场观测资料以及Wilcox Solar Observatory(WSO)天文台的太阳光球层磁图,分析了背景太阳风速度和日球电流片对CME到达1AU处渡越时间预报误差的影响.结果表明,背景太阳风速度与CME渡越时间误差并没有明显的相关性,在考虑了磁云通量管轴相对黄道面夹角的影响后相关性依然不明显.然而日球电流片对CME渡越时间却有明显的影响,对于初速度较小的异侧CME事件,其渡越时间大于同侧事件;而对于具有较大初速度的CME事件,异侧事件的渡越时间明显小于同侧事件.研究结果表明,CME与太阳风以及日球电流片的相互作用并不是简单的对流相互作用,造成高速CME异侧事件快于同侧事件到达地球的因素非常复杂,有待深入研究.   相似文献   

8.
太阳高能粒子事件常伴随太阳耀斑和日冕物质抛射事件(Coronal Mass Ejections,CME)出现,由于太阳高能粒子事件的关键因素是双CME的相互作用,利用SOHO卫星观测的高能粒子强度、耀斑强度以及CME的相对高度与时间,通过高度与时间拟合得到的速度,分析了2001年4月15日和2005年1月20日的太阳高能粒子事件强度与相关双CME事件的关系,发现这两个太阳高能粒子事件中E ≥ 10MeV质子的强度与双CME事件无关.因此在这两次太阳高能粒子事件早期,E ≥ 10MeV质子的强度只与相关太阳耀斑和CME有关.   相似文献   

9.
统计研究了2010年1月至2012年12月期间所有与耀斑爆发相伴生的日冕物质抛射(CME) 引发的地磁暴事件. 结果表明, 对于CME源区其主要分布在日面 45°E-45°W, 占总数的78.95%, 且西半球比东半球多, 即源区位于西半球的CME易产生地磁效应; X级耀斑与地磁效应的关联性更高, 60.0%的 X级耀斑在其爆发后的2~3天内观测到地磁暴, 而其他级别的耀斑与地磁效应的关联性低得多, 均不足10%; 通过对此期间日面爆发的所有X级耀斑研究分析后发现, 对于源区位于日面东经45°E-45°W 的X级耀斑, 若在其爆发过程中没有大尺度日面扰动, 则无伴生CME且后续产生地磁效应的可能性很低. 由此提出一种通过分析日面观测数据进行地磁暴预报的方法.   相似文献   

10.
基于多卫星联合观测数据,筛选了2006年12月至2017年10月期间122个太阳高能粒子(SEP)事件及其伴随的日冕物质抛射(CME),分析了SEP事件属性随相对经度的变化、与CME属性之间相关性的经向分布以及与Fe/O比值的关联.研究结果显示:低Fe/O类事件的峰值通量Ip通常更高,伴随CME更大,但通量上升速度较慢,且其Du(持续时间)和Ip与CME速度呈现更强的相关性;SEP特征时间TO(CME爆发至SEP事件爆发)与TR(SEP事件爆发至半峰值)随相对经度增加而增大,Du与Ip随相对经度增加而减小,通量上升斜率K在±90°范围内自东向西递减;SEP事件属性与伴随CME属性的相关性随相对经度的改变有明显变化,在磁连接好的位置,TO与CME速度等属性呈现负相关,TR与CME速度等属性呈现正相关,Du,Ip与CME速度之间的相关性更强.研究结果进一步表明,SEP事件观测属性既与CME参数相关,同时又具有很强的经度依赖性,在磁连接越好的位置卫星观测到的SEP事件强度越高,SEP观测参数受CME的影响越大,这对大型SEP事件的预报很有意义.此外,高Fe/O类SEP事件与CME相关性的减弱暗示了耀斑加速、种子粒子源等因素的影响.   相似文献   

11.
为了更加准确地判断X级耀斑是否引发质子事件,对X级质子耀斑和非质子耀斑的耀斑积分通量、源区、CME速度、CME角宽度、背景太阳风速度及背景X射线通量的分布进行了统计研究.发现非质子耀斑和质子耀斑的积分通量、经度、CME速度和CME角宽度具有明显不同的分布.非质子耀斑大多集中在东部,耀斑积分通量小于0.3J·m-2,CME速度小于1300km·s-1的区域内;质子耀斑大多集中在中部或西部,耀斑积分通量大于0.3J·m-2,CME速度大于1300km·s-1的区域内.质子耀斑伴随的CME角宽度主要集中在360°,非质子耀斑的CME角宽度分布则相对分散.两类耀斑的背景太阳风速度和背景X射线通量分布差别不大.利用两类耀斑各个参量分布上的差异,有望提高X级耀斑预报的准确率.   相似文献   

12.
Coronal mass ejection (CME) occurs when there is an abrupt release of a large amount of solar plasma, and this cloud of plasma released by the Sun has an intrinsic magnetic field. In addition, CMEs often follow solar flares (SF). The CME cloud travels outward from the Sun to the interplanetary medium and eventually hits the Earth’s system. One of the most significant aspects of space weather is the ionospheric response due to SF or CME. The direction of the interplanetary magnetic field, solar wind speed, and the number of particles are relevant parameters of the CME when it hits the Earth’s system. A geomagnetic storm is most geo-efficient when the plasma cloud has an interplanetary magnetic field southward and it is accompanied by an increase in the solar wind speed and particle number density. We investigated the ionospheric response (F-region) in the Brazilian and African sectors during a geomagnetic storm event on September 07–10, 2017, using magnetometer and GPS-TEC networks data. Positive ionospheric disturbances are observed in the VTEC during the disturbed period (September 07–08, 2017) over the Brazilian and African sectors. Also, two latitudinal chains of GPS-TEC stations from the equatorial region to low latitudes in the East and West Brazilian sectors and another chain in the East African sector are used to investigate the storm time behavior of the equatorial ionization anomaly (EIA). We noted that the EIA was disturbed in the American and African sectors during the main phase of the geomagnetic storm. Also, the Brazilian sector was more disturbed than the African sector.  相似文献   

13.
The current paradigm for the source of large, gradual solar energetic particle (SEP) events is that theyare accelerated in coronal/interplanetary shocks driven by coronal mass ejections (CMEs). Early studies established that there is a rough correlation between the logs of the CME speed and the logs of the SEP intensities. Here I review two topics challenging the basic paradigm, the recent discovery that CMEs are also associated with impulsive, high-Z rich SEP events and the search for gradual SEP sources other than CME-driven shocks. I then discuss three topics of recent interest dealing with the relationship between the shock or CME properties and the resulting SEP events. These are the roles that CME accelerations, interactions between fast and preceding slow CMEs, and widths of fast CMEs may play in SEP production.  相似文献   

14.
Several methods for CME speed estimation are discussed. These include velocity derivation based on the frequency drifts observed in metric and decametric radio wave data using a range of coronal density models. Coronagraph height–time plots allow measurement of plane-of-sky and expansion speeds. These in turn can enable propagation speeds to be derived from a range of empirical relations. Simple geometric e.g., cone, models can provide propagation velocity estimates for suitable halo or partial halo events. Interplanetary scintillation observations allow speed estimates at large distances from the Sun detecting in particular the deceleration of the faster CMEs. Related interplanetary shocks and the arrival times and speeds of the associated magnetic clouds at Earth can also be considered. We discuss the application of some of these methods to the transit to Earth of a complex CME that originated earlier than 16:54 U.T. on 07-NOV-2004. The difficulties in making velocity estimates from radio observations, particularly under disturbed coronal conditions, are highlighted.  相似文献   

15.
Coronal mass ejections (CMEs) observed near the Sun via LASCO coronographic imaging are the most important solar drivers of geomagnetic storms. ICMEs, their interplanetary, near-Earth counterparts, can be detected in situ, for example, by the Wind and ACE spacecraft. An ICME usually exhibits a complex structure that very often includes a magnetic cloud (MC). They can be commonly modelled as magnetic flux ropes and there is observational evidence to expect that the orientation of a halo CME elongation corresponds to the orientation of the flux rope. In this study, we compare orientations of elongated CME halos and the corresponding MCs, measured by Wind and ACE spacecraft. We characterize the MC structures by using the Grad–Shafranov reconstruction technique and three MC fitting methods to obtain their axis directions. The CME tilt angles and MC fitted axis angles were compared without taking into account handedness of the underlying flux rope field and the polarity of its axial field. We report that for about 64% of CME–MC events, we found a good correspondence between the orientation angles implying that for the majority of interplanetary ejecta their orientations do not change significantly (less than 45 deg rotation) while travelling from the Sun to the near-Earth environment.  相似文献   

16.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号