首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
基于1996-2005年88个引起重大地磁暴的CME(日冕物质抛射)事件、1996-2000年的47个CME事件以及1997-2002年的29个全晕状CME事件,结合ACE卫星在1AU处的太阳风和行星际磁场观测资料以及Wilcox Solar Observatory(WSO)天文台的太阳光球层磁图,分析了背景太阳风速度和日球电流片对CME到达1AU处渡越时间预报误差的影响.结果表明,背景太阳风速度与CME渡越时间误差并没有明显的相关性,在考虑了磁云通量管轴相对黄道面夹角的影响后相关性依然不明显.然而日球电流片对CME渡越时间却有明显的影响,对于初速度较小的异侧CME事件,其渡越时间大于同侧事件;而对于具有较大初速度的CME事件,异侧事件的渡越时间明显小于同侧事件.研究结果表明,CME与太阳风以及日球电流片的相互作用并不是简单的对流相互作用,造成高速CME异侧事件快于同侧事件到达地球的因素非常复杂,有待深入研究.   相似文献   

2.
日冕物质抛射(CME)是太阳质子事件的重要源头.CME的速度和源区位置是太阳质子事件产生的重要因素.通过统计最近5年全晕CME与太阳质子事件的关系发现,速度大且源区位置距离日面上连接地球磁力线足点近的全晕CME更易引发太阳质子事件,其中速度大于1200km…-1、角距离60°以内的样本引发太阳质子事件的概率最高.对3个未引发太阳质子事件的高速全晕CME进行了详细分析,发现CME的主体爆发方向和行星际磁场环境的变化也影响太阳质子事件的产生.因此,在太阳质子事件的实际预报中,综合CME爆发速度、源区位置、主体抛射方向和行星际环境等多个因素才能给出更准确的事件预报结果.   相似文献   

3.
基于Gopalswamy预报日冕物质抛射(CME)渡越时间的经验模型,选取1996-2007年间52个与地磁效应Dst<-50nT相关的CME事件以及10个引起特大磁暴(Dst<-200nT)的CME事件,结合ACE卫星在1AU处的太阳风观测资料,分析背景太阳风对流效应对CME到达1AU处渡越时间预报的影响.对于52个CME事件,考虑太阳风对流效应的影响后,预报的标准偏差由16.5h降为11.4h,修正后的误差分布趋向于高斯分布,并且68%事件的预报误差小于15h.对于10个引起特大磁暴的CME事件,考虑太阳风对流效应的影响后,预报的标准偏差由10.6h降低到6.5h,其中6个事件的预报误差小于5h.研究结果表明,对于CME事件,考虑背景太阳风对流效应的影响可以降低预报CME渡越时间的标准偏差,说明太阳风对流效应对预报CME事件渡越时间具有重要作用.   相似文献   

4.
通过偶极子场和六极子场适当叠加,改进猜解磁场,使猜解磁场在太阳南北极符号相反,然后采用理想磁流体力学方程组(MHD),由猜解磁场与太阳风流动相互作用计算出稳态自洽解,得到定性上与观测比较接近的具有两个冕流的背景结构.在两个冕流间采用具有同心圆磁场位形的触发模型触发CME事件,研究CME的日冕传播特征.模拟结果表明,CME被约束在两冕流间传播,CME闭磁场位形和磁云横截面磁场位形相似,可以解释1AU处观测磁云的部分特征;在CME附近,存在压力和Lorentz力起主要作用的区域,这可以为分析1AU处CME事件的观测数据提供帮助.  相似文献   

5.
基于多卫星联合观测数据,筛选了2006年12月至2017年10月期间122个太阳高能粒子(SEP)事件及其伴随的日冕物质抛射(CME),分析了SEP事件属性随相对经度的变化、与CME属性之间相关性的经向分布以及与Fe/O比值的关联.研究结果显示:低Fe/O类事件的峰值通量Ip通常更高,伴随CME更大,但通量上升速度较慢,且其Du(持续时间)和Ip与CME速度呈现更强的相关性;SEP特征时间TO(CME爆发至SEP事件爆发)与TR(SEP事件爆发至半峰值)随相对经度增加而增大,Du与Ip随相对经度增加而减小,通量上升斜率K在±90°范围内自东向西递减;SEP事件属性与伴随CME属性的相关性随相对经度的改变有明显变化,在磁连接好的位置,TO与CME速度等属性呈现负相关,TR与CME速度等属性呈现正相关,Du,Ip与CME速度之间的相关性更强.研究结果进一步表明,SEP事件观测属性既与CME参数相关,同时又具有很强的经度依赖性,在磁连接越好的位置卫星观测到的SEP事件强度越高,SEP观测参数受CME的影响越大,这对大型SEP事件的预报很有意义.此外,高Fe/O类SEP事件与CME相关性的减弱暗示了耀斑加速、种子粒子源等因素的影响.   相似文献   

6.
在耀斑伴随日冕物质抛射(CME)事件编目数据的基础上,进行太阳质子事件(SPE)匹配,构建研究数据集.利用Apriori算法挖掘SPE与耀斑级别、耀斑发生日面位置以及CME角宽度和速度的关联关系.结果表明:X级耀斑、全晕CME、高速(>1000km·-1) CME和日面西半球耀斑是最可能伴随质子事件的4种特征,其诱发质子事件概率依次为0.366,0.355,0.30,0.155.角宽度低于120°或速度低于400km·-1的CME产生质子事件的概率为0.高速CME产生质子事件的概率是低速(400~1000km·-1) CME的8.6倍,X级耀斑产生质子事件的概率是M级耀斑的6.2倍,日面西部耀斑产生质子事件的概率是日面东部耀斑概率的3.9倍,全晕CME产生太阳质子事件的概率是非全晕(120°~360°) CME的3.8倍.对太阳质子事件样本进行过采样处理,利用随机森林等5种典型有监督学习算法,构建了基于第23太阳活动周耀斑和CME特征的质子事件预测模型.结果表明,该预报模型的质子事件预测准确率、精确率和召回率均控制在91%以上.   相似文献   

7.
以1997-2003年期间的73个日冕物质抛射(CME)激波扰动事件和模糊数学为基础,提出了一种预报地磁扰动的方法.该方法以CME事件爆发的日面经纬度、相关地磁扰动事件的渡越时间、地磁扰动指数、IPS观测的太阳风速度跃变量为基础,建立了预报CME地磁扰动事件的μθ,μφ,μT,μM,μ△v从属函数,考虑了CME初始速度对激波到达时间的影响.以这5个从属函数为基础并利用模糊数学对1996-2004年期间73个经行星际闪烁(IPS)观测认证的CME激波引起的地磁扰动事件进行了预报实验.实验结果表明,磁扰开始时间预报的相对误差,△Tpre/Tobs≤30%的事件占总事件数的91.78%,而△Tpre/Tobs>30%的事件占总事件数的12.33%;磁扰幅度(∑Kp)大小的预报,其相对误差△∑Kp/∑Kpobs≤30%的事件占总事件数的60.27%,相对误差≥50%的事件占总事件数的12.33%.这表明该预报方法对空间灾害性事件地磁扰动的定量预报具有很大应用潜力.   相似文献   

8.
1997年1月7-10日广州台站银河宇宙线强度变化特征   总被引:1,自引:1,他引:1  
1997年1月7-10日的CME事件虽然只引起了中等强度的磁暴,但引起了很强的地球物理效应,这次CME事件影响了银河宇宙线的强度。本文给出了CME在行星际传播期间广州多方向闪烁望远镜观测台站的几个方向记录的银河宇宙线强度变化的特征,并做了简要的分析。  相似文献   

9.
根据WIND飞船的观测资料,讨论了2000年发生的南向磁场(BS)事件,分析了它们的源,发现12次事件中11次的源是日冕物质抛射(CME)。运用从地球向太阳时间倒推的方法和LASCO,EIT195A的观测资料,确定了这些CME。它们都是快速CME,伴有行星际激波,都具有晕状(Halo)形态,它们在日面上发生的位置是在一个不对称的区域内。还分析了5个强南向磁场(BS≥20nT)事件,发现它们的CME源,或者具有很高的能量,或者抛射方向正对地球,或者是具有叠加效应的CME系列,分析表明,在我们所讨论的太阳活动高年,大的行星际扰动和强地磁暴与高速流的联系并不密切。  相似文献   

10.
太阳是一个异常活跃的天体,其爆发过程会对地球周围空间环境产生重要影响. 通常,单个高能质子即足以引起飞行器中微电子器件出现异常,因此太阳质子事件预报是空间天气预报的重要内容. 关于预报模型的参数选择尚有值得改进之处. 研究认为,Ⅰ型噪暴与日冕加热磁重联具有密切关系,可以作为预报参数. 通过两个典型太阳爆发事件的详细资料分析,说明了Ⅰ型噪暴与质子事件及CME的相关性.   相似文献   

11.
日冕物质抛射(CME)从发生至引起地磁暴最大值的时间间隔称为穿越时间.本文选取1997-2015年89个CME-Dst事件,分析CME速度、能量、耀斑类型等对穿越时间的影响;采用非线性拟合以及支持向量机(SVM)非线性回归技术,建立基于1997-2009年62个CME-Dst事件的CF模型和SVM模型,并利用其余27个CME-Dst事件对模型预报效果分别进行检验.结果表明,CF模型和SVM模型的预报准确率均达到85.2%,其中CF模型的平均绝对值误差为13.77 h,而SVM模型为13.88 h.与ECA模型结果(准确率为77.8%,平均绝对值误差为14.55 h)进行对比发现,CF模型和SVM模型的准确率更高而误差更小.CF模型和SVM模型能够提前1~5天较好地预报地磁暴爆发时间.  相似文献   

12.
In this work, we present a study of the coronal mass ejection (CME) dynamics using LASCO coronagraph observations combined with in-situ ACE plasma and magnetic field data, covering a continuous period of time from January 1997 to April 2001, complemented by few extreme events observed in 2001 and 2003. We show, for the first time, that the CME expansion speed correlates very well with the travel time to 1 AU of the interplanetary ejecta (or ICMEs) associated with the CMEs, as well as with their preceding shocks. The events analyzed in this work are a subset of the events studied in Schwenn et al. (2005), from which only the CMEs associated with interplanetary ejecta (ICMEs) were selected. Three models to predict CME travel time to Earth, two proposed by Gopalswamy et al. (2001) and one by Schwenn et al. (2005), were used to characterize the dynamical behavior of this set of events. Extreme events occurred in 2001 and 2003 were used to test the prediction capability of the models regarding CMEs with very high LASCO C3 speeds.  相似文献   

13.
Transients in the heliosphere, including coronal mass ejections (CMEs) and corotating interaction regions can be imaged to large heliocentric distances by heliospheric imagers (HIs), such as the HIs onboard STEREO and SMEI onboard Coriolis. These observations can be analyzed using different techniques to derive the CME speed and direction. In this paper, we use a three-dimensional (3-D) magneto-hydrodynamic (MHD) numerical simulation to investigate one of these methods, the fitting method of  and . Because we use a 3-D simulation, we can determine with great accuracy the CME initial speed, its speed at 1 AU and its average transit speed as well as its size and direction of propagation. We are able to compare the results of the fitting method with the values from the simulation for different viewing angles between the CME direction of propagation and the Sun-spacecraft line. We focus on one simulation of a wide (120–140°) CME, whose initial speed is about 800 km s−1. For this case, we find that the best-fit speed is in good agreement with the speed of the CME at 1 AU, and this, independently of the viewing angle. The fitted direction of propagation is not in good agreement with the viewing angle in the simulation, although smaller viewing angles result in smaller fitted directions. This is due to the extremely wide nature of the ejection. A new fitting method, proposed to take into account the CME width, results in better agreement between fitted and actual directions for directions close to the Sun–Earth line. For other directions, it gives results comparable to the fitting method of Sheeley et al. (1999). The CME deceleration has only a small effect on the fitted direction, resulting in fitted values about 1–4° higher than the actual values.  相似文献   

14.
The white light coronagraphs onboard SOHO (LASCO-C2 and -C3) and most recently STEREO (SECCHI -COR1 and -COR2) have detected a myriad of coronal mass ejections (CME). They are a key component of space weather and under certain conditions they can become geo-effective, hence the importance of their kinematic characterization to help predict their effects. However, there is still a lot of debate on how to define the event boundaries for space weather purposes, which in turn makes it difficult to agree on their kinematic properties. That lack of agreement is reflected in both the manual and automated CME catalogs in existence. To contribute to a more objective definition and characterization of white-light coronagraph events, Goussies et al. (2010) introduced recently the concept of “texture of the event”. Based on that property, they developed a supervised segmentation algorithm to allow the automatic tracking of dynamic events observed in the coronagraphs field of view, which is called CORonal SEgmentation Technique (CORSET). In this work, we have enhanced the capabilities of the algorithm by adding several new functionalities, namely the automatic computation of different morphological and kinematic parameters. We tested its performance on 57 well-studied limb CME events observed with the LASCO coronagraphs between 1997 and 2001, and compared the parameters obtained with those from three existent CME lists: two of them obtained from an observer-based detection and tracking method (i.e., two manual catalogs), and the other one based on the automated detection and characterization of the CME events (i.e., a fully automated catalog). We found that 51 events could be tracked and quantified in agreement with the CME definition. In general terms, the position angle, and the radial and expansion speeds are in agreement with the manual catalogs used for comparison. On the other hand, some discrepancies between CORSET and the automated catalog were found, which can be explained by the different delimitation of the CME angular extent.  相似文献   

15.
Several methods for CME speed estimation are discussed. These include velocity derivation based on the frequency drifts observed in metric and decametric radio wave data using a range of coronal density models. Coronagraph height–time plots allow measurement of plane-of-sky and expansion speeds. These in turn can enable propagation speeds to be derived from a range of empirical relations. Simple geometric e.g., cone, models can provide propagation velocity estimates for suitable halo or partial halo events. Interplanetary scintillation observations allow speed estimates at large distances from the Sun detecting in particular the deceleration of the faster CMEs. Related interplanetary shocks and the arrival times and speeds of the associated magnetic clouds at Earth can also be considered. We discuss the application of some of these methods to the transit to Earth of a complex CME that originated earlier than 16:54 U.T. on 07-NOV-2004. The difficulties in making velocity estimates from radio observations, particularly under disturbed coronal conditions, are highlighted.  相似文献   

16.
以1997年1月空气天气事件期间的观测为依据,在构造了比较接近真实的背景太阳风基础上,进一步利用三维时变的MHD模式,模拟了CME(日冕物质抛射)激发的扰动在行星际空间的传播过程,对地球空间环境的影响及行星际磁场南向分量Bz在1AU的时间经历。模拟结果与WIND卫星的测量进行了比较。结果表明,模拟与观测得到的扰动得到地球的时间、地球空间环境各量的变化及Bz的时间经历基本一致。  相似文献   

17.
Coronal mass ejections (CMEs) observed near the Sun via LASCO coronographic imaging are the most important solar drivers of geomagnetic storms. ICMEs, their interplanetary, near-Earth counterparts, can be detected in situ, for example, by the Wind and ACE spacecraft. An ICME usually exhibits a complex structure that very often includes a magnetic cloud (MC). They can be commonly modelled as magnetic flux ropes and there is observational evidence to expect that the orientation of a halo CME elongation corresponds to the orientation of the flux rope. In this study, we compare orientations of elongated CME halos and the corresponding MCs, measured by Wind and ACE spacecraft. We characterize the MC structures by using the Grad–Shafranov reconstruction technique and three MC fitting methods to obtain their axis directions. The CME tilt angles and MC fitted axis angles were compared without taking into account handedness of the underlying flux rope field and the polarity of its axial field. We report that for about 64% of CME–MC events, we found a good correspondence between the orientation angles implying that for the majority of interplanetary ejecta their orientations do not change significantly (less than 45 deg rotation) while travelling from the Sun to the near-Earth environment.  相似文献   

18.
Campaigns to investigate the solar coronal mass ejection (CME) onset have been run using the Solar andHeliospheric Observatory (SOHO) since 1996. These have included coronagraph and extreme-ultraviolet (EUV) disc imaging, along with magnetic mapping of the photosphere, in concert with EUV and UV spectroscopic observations. These campaigns have included co-ordination with ground-based observatories, and with other spacecraft, especially Yohkoh and the Transition Region and Corona Explorer (TRACE). This multi-instrument, multi-spacecraft effort has provided many rewards, with some spectacular observations of countless eruptions. It has included the discovery of unexpected phenomena such as EUV waves and groundbreaking work on coronal dimming, and the development of sigmoidal shaped structures. Much has been learnt about the CME onset yet the most basic questions still remain. We have an unprecedented view of CME eruptions, yet we are still unable to identify clearly the onset process and we do not fully understand the CME-flare relationship. With all of the campaigns producing excellent multi-wavelength observations of CMEs, how far have we progressed in the understanding of the CME onset and, in particular, the CME-flare relationship? Can we identify lines of research using the SOHO data, which will provide the answers we seek — or do we need fundamentally different observation scenarios? It is the author's opinion that we actually have the observational tools required to understand much about the onset process and the CME/flare links, and the emphasis should be on understanding the limitations of our instrumentation and on removing any preconceived ideas from our interpretations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号