首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Accurate knowledge of the electron density is the key point in correcting ionospheric delays of electromagnetic measurements and in studying ionosphere physics. During the last decade Global Navigation Satellite Systems (GNSS) have become a promising tool for monitoring ionospheric parameters such as the total electron content (TEC). In this contribution we present a four-dimensional (4-D) model of the electron density consisting of a given reference part, i.e., the International Reference Ionosphere (IRI), and an unknown correction term expanded in terms of multi-dimensional base functions. The corresponding series coefficients are calculable from the satellite measurements by applying parameter estimation procedures. Since satellite data are usually sampled between GPS satellites and ground stations, finer structures of the electron density are modelable just in regions with a sufficient number of ground stations. The proposed method is applied to simulated geometry-free GPS phase measurements. The procedure can be used, for example, to study the equatorial anomaly.  相似文献   

2.
In the coming years, opportunities for remote sensing of electron density in the Earth’s ionosphere will expand with the advent of Galileo, which will become part of the global navigation satellite system (GNSS). Methods for accurate electron density retrieval from radio occultation data continue to improve. We describe a new method of electron density retrieval using total electron content measurements obtained in low Earth orbit. This method can be applied to data from dual-frequency receivers tracking the GPS or Galileo transmitters. This simulation study demonstrates that the method significantly improves retrieval accuracy compared to the standard Abel inversion approach that assumes a spherically symmetric ionosphere. Our method incorporates horizontal gradient information available from global maps of Total Electron Content (TEC), which are available from the International GNSS Service (IGS) on a routine basis. The combination of ground and space measurements allows us to improve the accuracy of electron density profiles near the occultation tangent point in the E and F regions of the ionosphere.  相似文献   

3.
In this research, as part of working towards improving the IRI over equatorial region, the total electron content (TEC) derived from GPS measurements and IRI-2007 TEC predictions at Chumphon station (10.72°N, 99.37°E), Thailand, during 2004–2006 is analyzed. The seasonal variation of the IRI-2007 TEC predictions is compared with the TEC from the IRI-2007 TEC model with the option of the actual F2 plasma frequency (foF2) measurements as well as the TEC from the GPS and International GNSS service (IGS). The Chumphon station is located at the equatorial region and the low latitude of 3.22°N. For a declining phase of the solar cycle (2004–2006), the study shows that the IRI-2007 TEC underestimates the IRI-2007 TEC with the foF2 observation at the nighttime by about 5 TECU. The maximum differences are about 15 TECU during daytime and 5 TECU during nighttime. The overestimation is more evident at daytime than at nighttime. When compared in terms of the root-mean square error (RMSE), we find that the highest RMSE between GPS TEC and IRI 2007 TEC is 14.840 TECU at 1230 LT in 2004 and the lowest average between them is 1.318 TECU at 0630 LT in 2006. The noon bite-out phenomena are clearly seen in the IRI-2007 TEC with and without optional foF2 measurements, but not on the GPS TEC and IGS TEC. The IRI TEC with optional foF2 measurements gives the lowest RMSE values between IRI TEC predicted and TEC measurement. However, the TEC measurements (GPS TEC and IGS TEC) are more correct to use at Chumphon station.  相似文献   

4.
一种用于电离层TEC监测的GNSS信号载波跟踪算法   总被引:1,自引:1,他引:0  
全球卫星导航系统(GNSS)是电离层TEC监测中应用最普遍的手段. 目前方法通常是在传统导航用途的GNSS接收机输出的原始观测量基础上,经过数据后处理得到电离层TEC信息,其GNSS信号的跟踪处理算法依然采用GNSS导航接收机的算法. 针对GNSS系统用于电离层TEC监测的特殊性,提出一种称为GNSS双频信号和差联合跟踪的新算法,与传统方法相比,该算法直接跟踪电离层TEC的变化,可以提高电离层TEC跟踪的灵敏度和TEC的观测精度,改善电离层TEC监测性能.   相似文献   

5.
Global Navigation Satellite System (GNSS) measurements of the Total Electron Content (TEC) from local (Dourbes, 50.1°N, 04.6°E) and European IGS (International GNSS Service) stations were used to obtain the TEC changes during the geomagnetic storms of the latest solar activity cycle. A common epoch analysis, with respect to geomagnetic storm intensity, season, and latitude, was performed on data representing nearly 300 storm events. In general, the storm-time behaviour of TEC shows clear positive and negative phases, relative to the non-storm (median) behaviour, with amplitudes that tend to increase during more intense storms. The most pronounced positive phase is observed during winter, while the strongest and yet shortest negative phase is detected during equinox. Average storm-time patterns in the TEC behaviour are deduced for potential use in ionosphere prediction services.  相似文献   

6.
In this study, Total Electron Content (TEC) observations acquired by a GNSS receiver installed at Sonmiani (Geog. Coord. 25.19°N, 66.74°E, Geomag. Coord. 17.62°N, 141.5°E) are being reported for the first time. The data utilized is hourly instantaneous TEC values during 10 International Quiet Days (IQDs) per month from Jul-14 to Jun-15, totaling 120 observation days for monitoring nominal TEC. The findings confirm the semi-annual trend of TEC over Sonmiani, which lies at the northern crest of Equatorial Ionization Anomaly (EIA) region. The TEC measurements are then compared with NeQuick-2 and International Reference Ionosphere (IRI-2012) models. It was found that the TEC values derived from NeQuick-2 are in better agreement with GNSS measurements than those from IRI-2012. The TEC measurements also show seasonal variation which is largest during Equinox months. The TEC value in Dec solstice is higher than the Jun solstice, which confirms that the seasonal anomaly is playing a major role in this region during the course of study.  相似文献   

7.
With the advent of modern global networks of dual-frequency Global Positioning System (GPS), total electron content (TEC) measurements along slant paths connecting GPS receivers and satellites at 22,000 km have become the largest data set available to ionospheric scientists. The TEC can be calculated from the time and phase delay in the GPS signal using the GPS Toolkit, but an unknown bias will remain. In addition, UHF/VHF radio beacons on board low-Earth-orbiting satellites can also be used to measure the electron content. However, the TEC measurements are obtained by integrating TEC differences between slant paths, but also contain biases. It is often necessary to use data assimilative algorithms like the Ionospheric Data Assimilation Three-Dimensional (IDA3D), and to treat both GPS- and LEO-beacon TEC measurements as relative data in order to conduct ionospheric studies.  相似文献   

8.
The Global Navigation Satellite System (GNSS) has been a very powerful and important contributor to all scientific questions related to precise positioning on Earth’s surface, particularly as a mature technique in geodesy and geosciences. With the development of GNSS as a satellite microwave (L-band) technique, more and wider applications and new potentials are explored and utilized. The versatile and available GNSS signals can image the Earth’s surface environments as a new, highly precise, continuous, all-weather and near-real-time remote sensing tool. The refracted signals from GNSS radio occultation satellites together with ground GNSS observations can provide the high-resolution tropospheric water vapor, temperature and pressure, tropopause parameters and ionospheric total electron content (TEC) and electron density profile as well. The GNSS reflected signals from the ocean and land surface could determine the ocean height, wind speed and wind direction of ocean surface, soil moisture, ice and snow thickness. In this paper, GNSS remote sensing applications in the atmosphere, oceans, land and hydrology are presented as well as new objectives and results discussed.  相似文献   

9.
Total electron data (TEC) from GPS nowadays can be used as a tool for understanding the space weather phenomena. The development of prediction model for TEC is quiet crucial and challenging due to the dynamic behavior of the ionosphere, since it depends on different factors such as seasonal, diurnal and spatial variations, solar geomagnetic conditions etc. In this paper, an attempt is made for predicting the GPS derived TEC values for different GNSS stations over India using a hybrid method based on Ensemble empirical mode decomposition (EEMD) and Long Short-Term Memory (LSTM) deep learning method. The daily TEC time series data from the IISc Bangalore (Latitude 13.021, Longitude 77.570), Lucknow (Latitude 26.912, Longitude 80.956) and Hyderabad (Latitude 17.417, Longitude 78.551) stations over India during the period 2008 to 2015 of solar cycle 23 and 24 is used for analysis. The assessment of model performance for testing predicted output compared with LSTM and EMD-LSTM models, and their comparison results show that the hybrid EEMD-LSTM model presents better than the other models.  相似文献   

10.
11.
The intensity of large-scale traveling ionospheric disturbances (LS TIDs), registered using measurements of total electron content (TEC) during the magnetic storms on October 29–31, 2003, and on November 7–11, 2004, had been compared with that of local electron density disturbances. The data of TEC measurements at ground-based GPS receivers located near the ionospheric stations and the corresponding values of the critical frequency of the ionospheric F region foF2 were used for this purpose. The variations of TEC and foF2 were similar for all events mentioned above. The previous assumption that the ionospheric region with vertical extension from 150 to 200 km located near the F-layer maximum mainly contributes to the TEC variations was confirmed for the cases when the electron density disturbance at the F region maximum was not more than 50%. However, this region probably becomes vertically more extended when the electron density disturbance in the ionospheric F region is about 85%.  相似文献   

12.
Global Navigation Satellite Systems (GNSS), in particular the Global Positioning System (GPS), have been widely used for high accuracy geodetic positioning. The Least Squares functional models related to the GNSS observables have been more extensively studied than the corresponding stochastic models, given that the development of the latter is significantly more complex. As a result, a simplified stochastic model is often used in GNSS positioning, which assumes that all the GNSS observables are statistically independent and of the same quality, i.e. a similar variance is assigned indiscriminately to all of the measurements. However, the definition of the stochastic model may be approached from a more detailed perspective, considering specific effects affecting each observable individually, as for example the effects of ionospheric scintillation. These effects relate to phase and amplitude fluctuations in the satellites signals that occur due to diffraction on electron density irregularities in the ionosphere and are particularly relevant at equatorial and high latitude regions, especially during periods of high solar activity. As a consequence, degraded measurement quality and poorer positioning accuracy may result.  相似文献   

13.
The purpose of the LIEDR (local ionospheric electron density profile reconstruction) system is to acquire and process data from simultaneous ground-based total electron content (TEC) and digital ionosonde measurements, and subsequently to deduce the vertical electron density distribution above the ionosonde’s location. LIEDR is primarily designed to operate in real time for service applications and, for research applications and further development of the system, in a post-processing mode. The system is suitable for use at sites where collocated TEC and digital ionosonde measurements are available. Developments, implementations, and some preliminary results are presented and discussed in view of possible applications.  相似文献   

14.
Variations of ionospheric parameters Total Electron Content (TEC) by GNSS, critical frequency (foF2) by vertical sounding and electron density (Ne) by low-altitude satellite were studied at high, mid and low latitudes of the European sector during the magnetic storm of August 25–26, 2018. During the main phase of the storm the ionospheric F2-layer was under the positive disturbance at mid and low latitudes. Then the transition from the positive to negative ΔfoF2 values occurred at all latitudes. The recovery phase was characterized by negative ionospheric disturbance at all latitudes. This is due to the decrease of thermospheric O/N2 ratio during the recovery phase of the storm. The intense Es layers screened the reflections from the F2-layer on August 26th at high and at low latitudes but at different times. Some blackouts occurred due to the high absorption level at high latitudes. In general, foF2 and TEC data were highly correlated. The major Ne changes were at the low latitudes. In general, Ne data confirmed the ionospheric dynamics revealed with foF2 and TEC.  相似文献   

15.
A 10.7 cm solar radio flux F10.7, geomagnetic planetary equivalent amplitude (Ap index), and period variations were considered in this paper to construct a linear model for daily averaged ionospheric total electron content (TEC). The correlation coefficient of the modeled results and International GNSS Service (IGS) observables was approximately 0.97, which implied that the model could accurately reflect the realistic variation characteristics of the daily averaged TEC. The influences of the different factors on TEC and its characteristics at different latitudes were examined with this model. Results show that solar activity, annual and semiannual cycles are the three most important factors that affect daily averaged TEC. Solar activity is the primary determinant of TEC during periods with high solar activity, whereas periodic factors primarily contribute to TEC during periods with minimum solar activity. The extent of the influences of the different factors on TEC exhibits obvious differences at varying latitudes. The magnitude of the semiannual variation becomes less significant with the increase in latitude. Furthermore, a geomagnetic storm causes an increase in TEC at low latitudes and a decrease at high latitudes.  相似文献   

16.
Precise positioning based on Global Navigation Satellite System (GNSS) technique requires high accuracy ionospheric total electron content (TEC) correction models to account for the ionospheric path delay errors. We present an adjusted Spherical Harmonics Adding KrigING method (SHAKING) approach for regional ionospheric vertical TEC (VTEC) modeling in real time. In the proposed SHAKING method, the VTEC information over the sparse observation data area is extrapolated by the Adjusted Spherical Harmonic (ASH) function, and the boundary distortion in regional VTEC modeling is corrected by the stochastic VTEC estimated using Kriging interpolation. Using real-time GPS, GLONASS and BDS-2/3 data streams of the Crust Movement Observation Network of China (CMONOC), the SHAKING-based regional ionospheric VTEC maps are re-constructed over China and its boundary regions. Compared to GNSS VTECs derived from the independent stations, the quality of SHAKING solution improves by 13–31% and 6–33% with respect to the ASH-only solution during high and low geomagnetic periods, respectively. Compared to the inverse distance weighting (IDW) generated result, significant quality improved of SHAKING-based VTEC maps is also observed, especially over the edge areas with an improvement of 60–80%. Overall, the proposed SHAKING method exhibits notable advantage over the existing regional VTEC modeling techniques, which can be used for regional TEC modeling and associated high-precision positioning applications.  相似文献   

17.
This paper presents an analysis of the Total Electron Content (TEC) derived from the International GNSS Service receiver (formerly IGS) at Malindi (2.9°S, 40.1°E), Kenya for the periods 2004–2006 during the declining phase of solar cycle 23. The diurnal, monthly and seasonal variations of the TEC are compared with TEC from the latest International Reference Ionosphere model (IRI-2007). The GPS–TEC exhibits features such as an equatorial noon time dip, semi-annual variations, Equatorial Ionization Anomaly and day-to-day variability. The lowest GPS–TEC values are observed near the June solstice and September equinox whereas largest values are observed near the March equinox and December solstice. The mean GPS–TEC values show a minimum at 03:00 UT and a peak value at about 10:00 UT. These results are compared with the TEC derived from IRI-2007 using the NeQuick option for the topside electron density (IRI–TEC). Seasonal mean hourly averages show that IRI-2007 model TEC values are too high for all the seasons. The high prediction primarily occur during daytime hours till around midnight hours local time for all the seasons, with the highest percentage deviation in TEC of more 90% seen in September equinox and lowest percentage deviation in TEC of less than 20% seen in March equinox. Unlike the GPS–TEC, the IRI–TEC does not respond to geomagnetic storms and does overestimate TEC during the recovery phase of the storm. While the modeled and observed data do correlate so well, we note that IRI-2007 model is strongly overestimating the equatorial ion fountain effect during the descending phase of solar cycle, and this could be the reason for the very high TEC estimations.  相似文献   

18.
Triple frequency GNSS will be fully operational within the next decade, opening opportunities for new applications. Dual frequency GNSS already allow to study the ionosphere through the estimation of Total Electron Content (TEC). However, the precision is limited by the ambiguity resolution process. This paper studies a triple frequency TEC monitoring technique in which the use of Geometry-Free and Iono-Free linear combinations improves the ambiguity resolution process and therefore the precision of TEC. We have tested it on a set of triple frequency Giove-A/-B data from January and December 2008. The conclusions achieved are (1) TEC values are affected by an error of about 2–2.5 TECU produced through the ambiguity resolution process; (2) the error caused by the Geometric Free phase combination delays (hardware, multipath, noise, antenna phase center) on TEC is about 0.2 TECU; (3) the total error on TEC approximately reach 2–3 TECU.  相似文献   

19.
To analyze midlatitude medium-scale travelling ionospheric disturbances (MSTIDs) over Kazan (55.5°N, 49°E), Russia, the sufficiently dense network of GNSS receivers (more than 150 ground-based stations) were used. For the first time, daytime MSTIDs in the form of their main signature (band structure) on high-resolution two-dimensional maps of the total electron content perturbation (TEC maps) are compared with ionosonde data with a high temporal resolution. For a pair of events, a relationship between southwestward TEC perturbations and evolution of F2 layer traces was established. So F2 peak frequency varied in antiphase to TEC perturbations. The ionograms show that during the movement of plasma depletion band (overhead ionosonde) the F2 peak frequency is the highest, and vice versa, for the plasma enhancement band, the F2 peak frequency is the lowest. One possible explanation may be a greater inclination of the radio beam from the vertical during the placement of a plasma enhancement band above the ionosonde, as evidenced by the absence of multiple reflections and the increased occurrence rate of additional cusp trace. Another possible explanation may be the redistribution of the electron content in the topside ionosphere with a small decrease in the F peak concentration of the layer with a small increase in TEC along the line-of-sight. Analysis of F2 peak frequency variation shows that observed peak-to-peak values of TEC perturbation equal to 0.4 and 1 TECU correspond to the values of ΔN/N equal to 13% and 28%. The need for further research is evident.  相似文献   

20.
The Di Giovanni/Radicella model (DGR) /1/ determines a bottom side electron densty profile alone from the set of routinely scaled ionogram parameters foE, foF1, foF2 and M(3000)F2 and the total electron content; the smoothed sunspot number R12 appears in the calculation. Present designations are DGR2/2/ and DRR3 /3/ [see Appendix]; they are valid in the northern hemisphere. DGR is compared with electron density profiles derived from ionograms obtained at Juliusruh (54.6°N, 13.4°E), and with the (URSI-based) IRI90 at different conditiones. Experimental total electron content (TEC) data are compared to both models. At the considered station, the profiles obtained by both models are reasonably in agreement amongst themselves and with the experimental data.

The TEC derived from the DGR3 model is in good agreement with experimental TEC, whereas, at high solar activity, IRI90 gives too high TEC values, especially during daytime.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号