首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 107 毫秒
1.
  总被引:1,自引:1,他引:0  
全球导航卫星系统反射(GNSS-R)技术应用中需GNSS-R信号模拟器来测试反射信号接收机,以降低成本。为此,提出了一种基于双基雷达原理的全球导航卫星系统(GNSS)海面反射信号建模方法。首先,分析了GNSS-R双基雷达遥感原理,根据延迟和多普勒频率在海面的分布特点,选择海面的反射点,并计算相应反射单元的面积;然后,对散射系数进行了计算;最后,对多条反射信号的合路信号进行相关的仿真验证。验证结果表明:模拟的海面反射信号的相关功率曲线与ZV模型理论曲线的相关系数优于0.92,能够有效地用于GNSS海面反射信号的生成。  相似文献   

2.
基于双基雷达原理的GNSS海面反射信号建模方法   总被引:1,自引:1,他引:0  
全球导航卫星系统反射(GNSS-R)技术应用过程中接收机的测试验证需要反射信号产生源,以降低成本。信号的模型是GNSS-R信号产生源中的核心。针对缺乏相应模型的问题,提出了一种根据双基雷达原理建立GNSS海面反射信号模型的方法。首先,在分析GNSS海面反射信号特征的基础上,选取了恰当的海面反射点。然后,计算了雷达方程中的散射系数和散射面积,从而得到相应反射点的反射信号功率。最后,对所求得的反射信号参数进行仿真验证。验证的结果表明,反射信号的相关功率曲线与ZV模型理论曲线的相关系数优于0.98,能够有效地用于GNSS海面反射信号的生成。因此,该方法可为GNSS-R信号产生源的研制提供一定的理论支撑。  相似文献   

3.
全球导航卫星系统(GNSS)海面反射信号的模拟仿真采用的海浪谱多为风驱模型,而忽略了真实复杂环境中涌浪、降雨的影响。为此,提出了一种涌浪、降雨影响下的GNSS海面反射信号模型。首先,对Elfouhaily海浪谱、涌浪谱、降雨谱分别进行仿真,从海浪谱的角度分析涌浪、降雨对GNSS反射信号的影响。然后,设计了引入涌浪、降雨影响因子后的GNSS反射信号建模的方法,并建立噪声模型。最后,对星载场景下仿真得到的二维时延-多普勒相关功率分布图像(DDM)、时延相关功率波形(DW)进行分析,并与英国技术演示卫星(UK TDS-1)实测数据的处理结果进行了对比验证。结果表明:涌浪主要形成对GNSS反射信号影响较大的大尺度粗糙海面,而降雨对GNSS反射信号影响较小;仿真的DDM与实测数据结果的波形有很好的一致性,DW对比的相关系数达到0.92,优于未修正模型的对比结果,模拟的反射信号更为真实,证明了提出的GNSS反射信号建模方法的可行性、有效性。对真实复杂环境下的GNSS反射信号建模及GNSS反射信号星载探测应用研究具有一定的参考意义和实用价值。   相似文献   

4.
利用全球导航卫星系统反射信号测量技术(GNSS-R)进行土壤湿度反演过程中,实际接收天线方向性会造成GNSS直反信号相关功率测量偏差。针对地基观测场景下天线方向性造成的相关功率的类余弦振荡问题,提出了基于多项式拟合的信号相关功率修正方法。为了验证所提方法的有效性,开展了地基GNSS-R土壤湿度观测实验,结果表明:基于多项式拟合的相关功率修正可以消除信号相关功率的类余弦振荡,提升GNSS-R土壤湿度反演中的观测数据有效性和反演结果准确性。   相似文献   

5.
针对星载GPS反射信号(GPS-R)海面测高的误差问题,基于星载GPS-R实测数据进行星载海面测高模型和误差修正模型的研究,并验证其有效性。利用TechDemoSat-1(TDS-1)数据,使用时延多普勒图(DDM)海面高度反演技术,着重分析了星载GPS-R海面高度反演中的各类误差,并建立了相应的误差模型。对星载GPS-R海面高度反演模型进行优化,采用DTU15全球平均海面模型、DTU全球海潮模型验证反演精度。结果证明:优化后反演模型得到的全球海面高度反演结果的平均绝对误差(MAD)为6.05 m,精度提高了约29%,有效提高了海面高度反演的精度。研究成果对于推广星载GNSS反射信号(GNSS-R)的海面测高应用具有一定的意义。   相似文献   

6.
基于树模型机器学习方法的GNSS-R海面风速反演   总被引:3,自引:2,他引:1  
GNSS-R是基于GNSS卫星反射信号的一种新技术.GNSS-R技术可以运用到海面风场反演中,传统的GNSS-R技术反演海面风场主要有波形匹配和经验函数两种方法,风速反演精度约为2m·s-1.波形匹配方法耗时多,计算量大;经验函数方法通常只使用少量物理观测量,会造成信息浪费,损失一定的反演精度.为了提高海面风速的反演精度,引入机器学习领域常用的树模型算法决策树、随机森林、GBDT等对海面风速进行预测.利用GNSS-R与ECMWF数据构成训练集和验证集,训练集用于模型学习,验证集用于检验模型的反演效果.实验结果显示,决策树和随机森林预测误差约为0.6m·s-1,GBDT等算法的预测误差约为2m·s-1,满足风速反演要求.与GNSS-R传统反演方法相比,机器学习树模型算法效果更好,在验证集上表现稳定且误差较小.因此,可以将机器学习树模型算法运用到海面风速反演中.   相似文献   

7.
星载GNSS反射信号建模与仿真对GNSS反射信号正逆问题的研究及接收机算法和性能的评估非常重要。从几何、信号和信息的角度建立了星载GNSS反射信号分层建模方法。详细论述了星载GNSS反射信号的双基几何关系,建立了海风、涌浪和降雨驱动的线性组合海浪谱,并基于此计算了GNSS反射信号双基散射系数,基于各散射单元独立散射的假设推导了反射信号模型,通过仿真产生了星载GNSS反射信号及时延-多普勒相关功率,并与UK TDS-1卫星实测相关功率进行了对比分析。结果显示,通过先产生反射信号后处理得到的相关功率和直接端对端产生的相关功率与UK TDS-1卫星实测的相关功率的余弦相似度分别为0.97和0.94,所提架构和方法可正确对星载GNSS反射信号进行建模和仿真。同时,通过所建平台分析了涌浪和降雨形成的海浪谱对星载GNSS反射信号的影响。结果发现,涌浪主要影响低风速探测而对高风速无影响,降雨对星载GNSS反射信号无明显影响。   相似文献   

8.
软件GNSS(Global Navigation Satellite Systems)信号模拟器对于GNSS接收机的高效研发将做出重要贡献,因其结构灵活、开放性以及低成本.以GPS/Galileo组合系统为例,讨论了软件GNSS中频信号模拟器的架构,主要功能模块包括卫星星座仿真、接收机轨迹生成、传播通道特性仿真(包括电离层模型、对流层模型、多径模型等)、数字中频信号生成.在此基础上,着重阐述了数字中频信号生成模块的实现,功率谱图及分析结果验证了所生成的信号,包括GPS L1 C/A,Galileo E1 CBOC(Composite Binary Offset Carrier),Galileo E5a和E5b信号.  相似文献   

9.
基于北斗卫星反射信号的海面溢油探测方法及试验   总被引:1,自引:1,他引:0  
为了监测小规模固定海域的溢油状况,针对岸基接收平台提出了一种基于北斗卫星反射信号的海面溢油探测方法,该方法将全球导航卫星系统反射信号(GNSS-R)技术应用于岸基条件下的海面溢油探测。进行了岸基试验,利用右旋圆极化(RHCP)天线和左旋圆极化(LHCP)天线分别采集北斗卫星直射与反射信号,在信号同步的基础上提取卫星直射和反射信号的相关功率,并结合北斗卫星的高度角与方位角信息,反演目标海域的介电常数来判断海面有无溢油。试验结果表明探测表面为油面时,介电常数反演结果均值为3.6,标准差为2.13,这与油的真实介电常数范围2.0~4.5一致,远小于海水介电常数,证明将GNSS-R应用到岸基海面溢油探测中具有可行性。  相似文献   

10.
全球导航卫星系统(GNSS)共视(CV)技术应用中需要对GNSS共视信号进行模拟仿真,可以降低对共视接收机和共视算法进行测试过程中的成本。为此,提出了一种基于信道复用方法的GNSS共视信号的双路信号模拟方法。首先,对GNSS共视技术原理进行了分析。然后,根据GNSS直射信号的模拟思路,设计了基于GNSS直射信号模拟器的GNSS共视信号模拟方法,对共视信号传播过程中可能产生的误差进行了分析。最后,对零基线、短基线、长基线3种场景下仿真的共视信号,以及实场采集的试验数据进行了验证分析。验证的结果表明,仿真的GNSS共视信号定位准确,定位精度在米级;共视比对结果均方根值(RMS)精度优于12 ns,可以进行共视法时间传递,证明了提出的共视信号模拟方法能够有效地用于GNSS共视信号生成。对GNSS共视信号模拟器、共视接收机的研制和共视算法的研究具有一定的理论参考意义和实际应用价值。   相似文献   

11.
GNSS reflectometry (GNSS-R) has been widely studied in recent years for various applications, such as soil moisture monitoring, biomass analysis, and sea state monitoring. This paper presents the concept of a novel application of using GNSS-R technology for deformation monitoring. Instead of installing GNSS on the deformation body to sense the movement, GNSS-R deformation monitoring system estimates the deformation from receiving GNSS signal reflected by the deformation body remotely. A prototype of GNSS-R deformation monitoring system has been developed based on GNSS software receiver technology. A 3D geometrical model of GNSS signal reflection has been used to reveal the relationship between the change of carrier phase difference and deformation. After compensating the propagation path delay changes caused by satellite movement, the changes in the remaining carrier phase difference are linked to the deformation. Field tests have been carried using the GNSS-R system developed and the results show sub-centimeter level deformation can be observed with the new technology. Unlike other GNSS deformation monitoring methods, GNSS-R receivers are not installed on the slope which makes this new technology more attractive.  相似文献   

12.
The devastating Sumatra tsunami in 2004 demonstrated the need for a tsunami early warning system in the Indian Ocean. Such a system has been installed within the German-Indonesian Tsunami Early Warning System (GITEWS) project. Tsunamis are a global phenomenon and for global observations satellites are predestined. Within the GITEWS project a feasibility study on a future tsunami detection system from space has therefore been carried out. The Global Navigation Satellite System Reflectometry (GNSS-R) is an innovative way of using GNSS signals for remote sensing. It uses ocean reflected GNSS signals for sea surface altimetry. With a dedicated Low Earth Orbit (LEO) constellation of satellites equipped with GNSS-R receivers, densely spaced sea surface height measurements could be established to detect tsunamis. Some general considerations on the geometry between LEO and GNSS are made in this simulation study. It exemplary analyzes the detection performance of a GNSS-R constellation at 900 km altitude and 60° inclination angle when applied to the Sumatra tsunami as it occurred in 2004. GPS is assumed as signal source and the combination with GLONASS and Galileo signals is investigated. It can be demonstrated, that the combination of GPS and Galileo is advantageous for constellations with few satellites while the combination with GLONASS is preferable for constellations with many satellites. If all three GNSS are combined, the best detection performance can be expected for all scenarios considered. In this case an 18 satellite constellation will detect the Sumatra tsunami within 17 min with certainty, while it takes 53 min if only GPS is considered.  相似文献   

13.
基于GPS遥感的延迟映射接收机关键技术   总被引:3,自引:1,他引:2  
全球卫星定位系统GPS(Global Positioning System)广泛应用于定位和导航,还可利用海面对GPS信号产生的散射效应进行微波遥感,是一种新型微波遥感手段.首先介绍了GPS海洋遥感测风技术产生背景及特点,给出了GPS散射信号测量技术理论基础,重点分析了延迟映射接收机设计中提高采样信号信噪比、双射频前端电路设计、计算反射点延迟、接收机工作模式、内嵌软件处理等5项关键技术.设计的延迟映射接收机样机在天津近海完成了首次搭载飞行试验,试验结果表明,延迟映射接收机可同时接收直射和海面散射卫星信号并输出导航定位解,正确计算镜面散射点码延迟,准确接收海面散射的GPS卫星信号,且散射信号信噪比达到了14.9 dB以上,接收机输出为反演海面风场提供了准确的基础数据,这种方式可推广到遥感探测陆地土壤湿度、海冰厚度、海浪高度等领域.   相似文献   

14.
15.
The paper explores a method to obtain accurate lake surface heights using measurements of the Global Navigation Satellite System (GNSS) carrier phase reflected from the lake surface. The method is referred to as Global Navigation Satellite System-Reflection (GNSS-R) open-loop difference phase altimetry method. It consists of two key technologies: one is the open-loop tracking method to track the GNSS-R signals, where the direct GNSS signal’s frequency is used as a reference frequency to obtain the carrier phases of the GNSS-R signals; the other key technology is time difference phase altimetry method to invert the lake surface heights using two or more carrier phases of GNSS-R signals received simultaneously. A validation experiment is carried out on the SANYING bridge over GUANTING lake using a GNSS-R receiver developed by the Center for Space Science and Applied Research (CSSAR), processing the data with GNSS-R open-loop difference phase altimetry method. The lake surface height results are consistent with the height results of GPS dual-frequency differential positioning altimetry. The results show that we can achieve centimeter level height in one minute average, by using 11 minutes carrier phase data of three GNSS-R signals received simultaneously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号