首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 885 毫秒
1.
In the framework of its space debris research activities ESA established an optical survey program to study the space debris environment at high altitudes, in particular in the geostationary ring and in the geostationary transfer orbit region. The Astronomical Institute of the University of Bern (AIUB) performs these surveys on behalf of ESA using ESA’s 1-m telescope in Tenerife. Regular observations were started in 1999 and are continued during about 120–140 nights per year. Results from these surveys revealed a substantial amount of space debris at high altitudes in the size range from 0.1 to 1 m. Several space debris populations with different dynamical properties were identified in the geostationary ring. During the searches for debris in the geostationary transfer orbit region a new population of objects in unexpected orbits, where no potential progenitors exist, was found. The orbital periods of these objects are clustered around one revolution per day; the eccentricities, however, are scattered between 0 and 0.6. By following-up some of these objects using the ESA telescope and AIUB’s 1-m telescope in Zimmerwald, Switzerland, it was possible to study the properties of this new population. One spectacular finding from monitoring the orbits over time spans of days to months is the fact that these objects must have extreme area-to-mass ratios, which are by several orders of magnitudes higher than for ‘normal-type’ debris. This in turn supports the hypothesis that the new population actually is debris generated in or near the geostationary ring and which is in orbits with periodically varying eccentricity and inclination due to perturbations by solar radiation pressure. In order to further study the nature of these debris, multi-color and temporal photometry (light curves) were acquired with the Zimmerwald telescope. The light curves show strong variations over short time intervals, including signals typical for specular reflections. Some objects exhibit distinct periodic variations with periods ranging from 10 to several 100 s. All this is indicative for objects with complicated shapes and some highly reflective surfaces.  相似文献   

2.
In the framework of space debris, the orbit determination process is a fundamental step, both, for researchers and for satellite operators. The accurate knowledge of the orbit of space debris objects is needed to allow space debris characterization studies and to avoid unnecessary collision avoidance maneuvers.The accuracy of the results of an orbit determination process depends on several factors as the number, the accuracy, the kind of processed measurements, their distribution along the orbit, and the object-observer relative geometry. When the observation coverage of the target orbit is not homogeneous, the accuracy of the orbit determination can be improved processing different kind of observables. Recent studies showed that the satellite laser ranging technique can be successfully applied to space debris.In this paper, we will investigate the benefits of using laser ranges and angular measurements for the orbit determination process. We will analyze the influence of the number of used observations, of the covered arc of orbit, of each observable, and of the observation geometry on the estimated parameters. Finally, using data acquired on short observation arcs, we analyze the achievable accuracies for the orbital regimes with the highest space debris density, and to the consequences of the data fusion on catalog maintenance operations. The results shown are obtained using only real data (both angular and laser measurements) provided by sensors of the Swiss Optical Ground Station and Geodynamics Observatory Zimmerwald owned by the Astronomical Institute of the University of Bern (AIUB) and for some studies also using ranges provided from other stations of the International Laser Ranging Service (ILRS).  相似文献   

3.
Missions to geosynchronous orbits remain one of the most important elements of space launch traffic, accounting for 40% of all missions to Earth orbit and beyond during the four-year period 2000–2003. The vast majority of these missions leave one or more objects in geosynchronous transfer orbits (GTOs), contributing on a short-term or long-term basis to the space debris population. National and international space debris mitigation guidelines seek to curtail the accumulation of debris in orbits which penetrate the regions of low Earth orbit and of geosynchronous orbit. The orbital lifetime of objects in GTO can be greatly influenced by the initial values of perigee, inclination, and right ascension of the orbital plane, leading to orbital lifetimes of from less than one month to more than 100 years. An examination of the characteristic GTOs employed by launch vehicles from around the world has been conducted. The consequences of using perigees above 300 km and super-synchronous apogees, typically above 40,000 km, have been identified. In addition, the differences in orbital behavior of launch vehicle stages and mission-related debris in GTOs have been investigated. Greater coordination and cooperation between space launch service providers and spacecraft designers and owners could significantly improve overall compliance with guidelines to mitigate the accumulation of debris in Earth orbit.  相似文献   

4.
A new type of space debris in near geosynchronous orbit (GEO) was recently discovered and later identified as exhibiting unique characteristics associated with high area-to-mass ratio (HAMR) objects, such as high rotation rates and high reflection properties. Observations have shown that this debris type is very sensitive to environmental disturbances, particularly solar radiation pressure, due to the fact that its motion depends on the actual effective area, orientation of that effective area, reflection properties and the area-to-mass ratio of the object is not stable over time. Previous investigations have modelled this type of debris as rigid bodies (constant area-to-mass ratios) or discrete deformed body; however, these simplifications will lead to inaccurate long term orbital predictions. This paper proposes a simple yet reliable model of a thin, deformable membrane based on multibody dynamics. The membrane is modelled as a series of flat plates, connected through joints, representing the flexibility of the membrane itself. The mass of the membrane, albeit low, is taken into account through lump masses at the joints. The attitude and orbital motion of this flexible membrane model is then propagated near GEO to predict its orbital evolution under the perturbations of solar radiation pressure, Earth’s gravity field (J2), third body gravitational fields (the Sun and Moon) and self-shadowing. These results are then compared to those obtained for two rigid body models (cannonball and flat rigid plate). In addition, Monte Carlo simulations of the flexible model by varying initial attitude and deformation angle (different shape) are investigated and compared with the two rigid models (cannonball and flat rigid plate) over a period of 100?days. The numerical results demonstrate that cannonball and rigid flat plate are not appropriate to capture the true dynamical evolution of these objects, at the cost of increased computational time.  相似文献   

5.
This paper introduces a mission concept for active removal of orbital debris based on the utilization of the CubeSat form factor. The CubeSat is deployed from a carrier spacecraft, known as a mothership, and is equipped with orbital and attitude control actuators to attach to the target debris, stabilize its attitude, and subsequently move the debris to a lower orbit where atmospheric drag is high enough for the bodies to burn up. The mass and orbit altitude of debris objects that are within the realms of the CubeSat’s propulsion capabilities are identified. The attitude control schemes for the detumbling and deorbiting phases of the mission are specified. The objective of the deorbiting maneuver is to decrease the semi-major axis of the debris orbit, at the fastest rate, from its initial value to a final value of about 6471?km (i.e., 100?km above Earth considering a circular orbit) via a continuous low-thrust orbital transfer. Two case studies are investigated to verify the performance of the deorbiter CubeSat during the detumbling and deorbiting phases of the mission. The baseline target debris used in the study are the decommissioned KOMPSAT-1 satellite and the Pegasus rocket body. The results show that the deorbiting times for the target debris are reduced significantly, from several decades to one or two years.  相似文献   

6.
The space debris environment is one of the major threats against payloads. Space debris orbital distribution is of great importance for space debris environment modeling. Due to perturbation factors, the Right Ascension of Ascending Node (RAAN) of space objects changes consistently, causing regular rotation of the orbit plane around Earth’s axis. Based on the investigation of the RAAN perturbation rate of concerned objects, this paper proposes a RAAN discretization method in order to present the space debris longitude-dependent distribution. Combined with two line element (TLE) data provided by the US Space Surveillance Network, the estimated value from RAAN discretization method is compared with the real case. The results suggest that using only the initial orbital data at the beginning of the time interval of interest, the RAAN discretization method is able to provide reliable longitude distribution of concerned targets in the next following period. Furthermore, spacecraft cumulative flux against space debris is calculated in this paper. The results suggest that the relevance between spacecraft RAAN setup and flux output is much smaller for LEO targets than MEO targets, which corresponds with the theory analysis. Since the nonspherical perturbation is the major factor for RAAN variation, the RAAN perturbation rate has little connection with the size of orbital objects. In other words, the RAAN discretization method introduced in this paper also applies to space debris of different size range, proposing a possible suggestion for the improvement of space debris environment engineering models.  相似文献   

7.
This paper presents the mission design for a CubeSat-based active debris removal approach intended for transferring sizable debris objects from low-Earth orbit to a deorbit altitude of 100 km. The mission consists of a mothership spacecraft that carries and deploys several debris-removing nanosatellites, called Deorbiter CubeSats. Each Deorbiter is designed based on the utilization of an eight-unit CubeSat form factor and commercially-available components with significant flight heritage. The mothership spacecraft delivers Deorbiter CubeSats to the vicinity of a predetermined target debris, through performing a long-range rendezvous maneuver. Through a formation flying maneuver, the mothership then performs in-situ measurements of debris shape and orbital state. Upon release from the mothership, each Deorbiter CubeSat proceeds to performing a rendezvous and attachment maneuver with a debris object. Once attached to the debris, the CubeSat performs a detumbling maneuver, by which the residual angular momentum of the CubeSat-debris system is dumped using Deorbiter’s onboard reaction wheels. After stabilizing the attitude motion of the combined Deorbiter-debris system, the CubeSat proceeds to performing a deorbiting maneuver, i.e., reducing system’s altitude so much so that the bodies disintegrate and burn up due to atmospheric drag, typically at around 100 km above the Earth surface. The attitude and orbital maneuvers that are planned for the mission are described, both for the mothership and Deorbiter CubeSat. The performance of each spacecraft during their operations is investigated, using the actual performance specifications of the onboard components. The viability of the proposed debris removal approach is discussed in light of the results.  相似文献   

8.
The number of Earth orbiting objects is constantly growing, and some orbital regions are becoming risky environments for space assets of interest, which are increasingly threatened by accidental collisions with other objects, especially in Low-Earth Orbit (LEO). Collision risk assessment is performed by various methods, both covariance and non-covariance based. The Cube algorithm is a non-covariance-based method used to estimate the collision rates between space objects, whose concept consists in dividing the space in cubes of fixed dimension and, at each time instant, checking if two or more objects share the same cube. Up to now its application has been limited to the long-term scenarios of orbital debris evolutionary models, where considering the uncertainties is not necessary and impractical. Within operative contexts, instead, medium-term collision risk analysis may be an important task, in which the propagation-related uncertainties play a prominent role, but the timescale poses challenges for the application of standard covariance-based conjunction analysis techniques. In this framework, this paper presents an approach for the evaluation of the medium-term collision frequency for objects in LEO, called Uncertainty-aware Cube method. It is a modified version of the Cube, able to take the possible errors in the space objects’ position into account for the detection of the conjunctions. As an object’s orbit is propagated, the along-track position error grows more and more, and each object could potentially be in a different position with respect to the one determined by numerical propagation and, thus, in a different cube. Considering the uncertainties, at each time instant the algorithm associates more than one cube to each object and checks if they share at least one cube. If so, a conjunction is detected and a degree of confidence is evaluated. The performance of the method is assessed in different LEO scenarios and compared to the original Cube method.  相似文献   

9.
It is estimated that more than 22,300 human-made objects are in orbit around the Earth, with a total mass above 8,400,000 kg. Around 89% of these objects are non-operational and without control, which makes them to be considered orbital debris. These numbers consider only objects with dimensions larger than 10 cm. Besides those numbers, there are also about 2000 operational satellites in orbit nowadays. The space debris represents a hazard to operational satellites and to the space operations. A major concern is that this number is growing, due to new launches and particles generated by collisions. Another important point is that the development of CubeSats has increased exponentially in the last years, increasing the number of objects in space, mainly in the Low Earth Orbits (LEO). Due to the short operational time, CubeSats boost the debris population. One of the requirements for space debris mitigation in LEO is the limitation of the orbital lifetime of the satellites, which needs to be lower than 25 years. However, there are space debris with longer estimated decay time. In LEÓs, the influence of the atmospheric drag is the main orbital perturbation, and is used in maneuvers to increment the losses in the satellite orbital energy, to locate satellites in constellations and to accelerate the decay.The goal of the present research is to study the influence of aerodynamic rotational maneuver in the CubeSat?s orbital lifetime. The rotational axis is orthogonal to the orbital plane of the CubeSat, which generates variations in the ballistic coefficient along the trajectory. The maneuver is proposed to accelerate the decay and to mitigate orbital debris generated by non-operational CubeSats. The panel method is selected to determine the drag coefficient as a function of the flow incident angle and the spinning rate. The pressure distribution is integrated from the satellite faces at hypersonic rarefied flow to calculate the drag coefficient. The mathematical model considers the gravitational potential of the Earth and the deceleration due to drag. To analyze the effects of the rotation during the decay, multiple trajectories were propagated, comparing the results obtained assuming a constant drag coefficient with trajectories where the drag coefficient changes periodically. The initial perigees selected were lower than 400 km of altitude with eccentricities ranging from 0.00 to 0.02. Six values for the angular velocity were applied in the maneuver. The technique of rotating the spacecraft is an interesting solution to increase the orbit decay of a CubeSat without implementing additional de-orbit devices. Significant changes in the decay time are presented due to the increase of the mean drag coefficient calculated by the panel method, when the maneuver is applied, reducing the orbital lifetime, however the results are independent of the angular velocity of the satellite.  相似文献   

10.
A joint team of researchers under the auspices of the Center for Space Debris Information Collection, Processing and Analysis of the Russian Academy of Sciences collaborates with 15 observatories around the world to perform observations of space debris. For this purpose, 14 telescopes were equipped with charge-coupled device (CCD) cameras, Global Positioning System (GPS) receivers, CCD frame processing and ephemeris computation software, with the support of the European and Russian grants. Many of the observation campaigns were carried out in collaboration with the Astronomical Institute of the University of Bern (AIUB) team operating at the Zimmerwald observatory and conducting research for the European Space Agency (ESA), using the Tenerife/Teide telescope for searching and tracking of unknown objects in the geostationary region (GEO). More than 130,000 measurements of space objects along a GEO arc of 340.9°, collected and processed at Space Debris Data Base in the Ballistic Center of the Keldysh Institute of Applied Mathematics (KIAM) in 2005–2006, allowed us to find 288 GEO objects that are absent in the public orbital databases and to determine their orbital elements. Methods of discovering and tracking small space debris fragments at high orbits were developed and tested. About 40 of 150 detected unknown objects of magnitudes 15–20.5 were tracked during many months. A series of dedicated 22-cm telescopes with large field of view for GEO survey tasks is in process of construction. 7 60-cm telescopes will be modernized in 2007.  相似文献   

11.
Accurate knowledge of the rotational dynamics of a large space debris is crucial for space situational awareness (SSA), whether it be for accurate orbital predictions needed for satellite conjunction analyses or for the success of an eventual active debris removal mission charged with stabilization, capture and removal of debris from orbit. In this light, the attitude dynamics of an inoperative satellite of great interest to the space debris community, the joint French and American spacecraft TOPEX/Poseidon, is explored. A comparison of simulation results with observations obtained from high-frequency satellite range measurements is made, showing that the spacecraft is currently spinning about its minor principal axis in a stable manner. Predictions of the evolution of its attitude motion to 2030 are presented, emphasizing the uncertainty on those estimates due to internal energy dissipation, which could cause a change of its spin state in the future. The effect of solar radiation pressure and the eddy-current torque are investigated in detail, and insights into some of the satellite’s missing properties are provided. These results are obtained using a novel, open-source, coupled orbit-attitude propagation software, the Debris SPin/Orbit Simulation Environment (D-SPOSE), whose primary goal is the study of the long-term evolution of the attitude dynamics of large space debris.  相似文献   

12.
13.
Removing orbital debris with lasers   总被引:2,自引:0,他引:2  
Orbital debris in low Earth orbit (LEO) are now sufficiently dense that the use of LEO space is threatened by runaway collision cascading. A problem predicted more than thirty years ago, the threat from debris larger than about 1 cm demands serious attention. A promising proposed solution uses a high power pulsed laser system on the Earth to make plasma jets on the objects, slowing them slightly, and causing them to re-enter and burn up in the atmosphere. In this paper, we reassess this approach in light of recent advances in low-cost, light-weight modular design for large mirrors, calculations of laser-induced orbit changes and in design of repetitive, multi-kilojoules lasers, that build on inertial fusion research. These advances now suggest that laser orbital debris removal (LODR) is the most cost-effective way to mitigate the debris problem. No other solutions have been proposed that address the whole problem of large and small debris. A LODR system will have multiple uses beyond debris removal. International cooperation will be essential for building and operating such a system.  相似文献   

14.
Instability of the present LEO satellite populations   总被引:1,自引:1,他引:0  
Several studies conducted during 1991–2001 demonstrated, with some assumed launch rates, the future unintended growth potential of the Earth satellite population, resulting from random, accidental collisions among resident space objects. In some low Earth orbit (LEO) altitude regimes where the number density of satellites is above a critical spatial density, the production rate of new breakup debris due to collisions would exceed the loss of objects due to orbital decay.  相似文献   

15.
The Satellite Laser Ranging (SLR) technology is used to accurately determine the position of space objects equipped with so-called retro-reflectors or retro-reflector arrays (RRA). This type of measurement allows to measure the range to the spacecraft with high precision, which leads to determination of very accurate orbits for these targets. Non-active spacecraft, which are not attitude controlled any longer, tend to start to spin or tumble under influence of the external and internal torques and forces.If the return signal is measured for a non-spherical non-active rotating object, the signal in the range residuals with respect to the reference orbit is more complex. For rotating objects the return signal shows an oscillating pattern or patterns caused by the RRA moving around the satellite’s centre of mass. This behaviour is projected onto the radial component measured by the SLR.In our work, we demonstrate how the SLR ranging technique from one sensor to a satellite equipped with a RRA can be used to precisely determine its spin motion during one passage. Multiple SLR measurements of one target over time allow to accurately monitor spin motion changes which can be further used for attitude predictions. We show our solutions of the spin motion determined for the non-active ESA satellite Envisat obtained from measurements acquired during years 2013–2015 by the Zimmerwald SLR station, Switzerland. All the necessary parameters are defined for our own so-called point-like model which describes the motion of a point in space around the satellite centre of mass.  相似文献   

16.
一种基于TLE数据的轨道异常分析方法   总被引:1,自引:1,他引:0       下载免费PDF全文
空间在轨物体的轨道异常是航天工程及预警领域普遍关注的问题,及时发现轨道异常意义重大,通过分析空间物体的轨道异常,可以及时发现和识别规避事件或碰撞事件,还可以了解监测网的能力.本文提出一种基于TLE数据的简单的轨道异常分析方法——长半轴变化法.该方法快速有效,应用到低轨在用卫星和美俄解体碎片的异常分析中,异常物体正确识别率可达到100%;对美俄解体碎片进行轨道异常分析后得出,美国空间监视网可以稳定探测90%以上的解体碎片.   相似文献   

17.
The Yarkovsky-Schach effect is a small perturbation affecting Earth satellites and space debris illuminated by the Sun. It was first applied to the orbit of LAGEOS satellites as an explanation of the residuals in orbital elements. In this work, we carry out several numerical integration tests taking into consideration various orbit and rotation parameters, in order to analyse this effect in a broader context. The semi-major axis variations remain small and depend on the spin axis attitude with respect to the Sun. We show that the force amplitude is maximised for orbits inclined with i?20–30°. We also observe the influence on other orbital elements, notably on the orbit inclination. However, these effects are clearly observed only on long timescales; in our simulations, we propagated the orbits for 200?y. The Yarkovsky-Schach effect is thus confirmed to have a minuscule magnitude. It should be taken into account in studies requiring high-precision orbit determination, or on expanded timescales.  相似文献   

18.
The world’s economy has become heavily dependent on the services provided by satellites. With the exponential increase in satellite launches, the population of defunct or inactive hardware in space has grown substantially. This is especially true in sensitive orbits such as the Low Earth Orbit (LEO) and Geostationary Earth Orbit (GEO) regimes. These objects, collectively known as orbital debris, can reach speeds of up to 28 000km h?1 in LEO. At these orbital speeds, even the smallest of objects can pose a considerable threat to operational satellites or astronauts. This makes the monitoring, and detection, of these objects of the utmost importance. This work describes the latest detection strategy used in one of Europe’s largest Space Situational Awareness (SSA) installation; the BIstatic RAdar for LEo Survey (BIRALES) space debris radar. We present a novel bottom-up approach that makes use of single-linkage clustering to identify faint radar streaks in spectrogram data. Tests on synthetic data have shown that the detection strategy presented in this study obtains a higher detection rate when it is compared against existing methods. Unlike other approaches, this detection strategy, using the Multi-beam streak detection strategy (MSDS) algorithm, was still able to recall 90% of the track information at an Signal-to-Noise Ratio (SNR) of 2dB.  相似文献   

19.
Today’s space debris environment shows major concentrations of objects within distinct orbital regions for nearly all size regimes. The most critical region is found at orbital altitudes near 800 km with high declinations. Within this region many satellites are operated in so called sun-synchronous orbits (SSO). Among those, there are Earth observation, communication and weather satellites. Due to the orbital geometry in SSO, head-on encounters with relative velocities of about 15 km/s are most probable and would thus result in highly energetic collisions, which are often referred to as catastrophic collisions, leading to the complete fragmentation of the participating objects. So called feedback collisions can then be triggered by the newly generated fragments, thus leading to a further population increase in the affected orbital region. This effect is known as the Kessler syndrome.  相似文献   

20.
The classical Laplace plane is a frozen orbit, or equilibrium solution for the averaged dynamics arising from Earth oblateness and lunisolar gravitational perturbations. The pole of the orbital plane of uncontrolled GEO satellites regress around the pole of the Laplace plane at nearly constant inclination and rate. In accordance with Friesen et al. (1993), we show how this stable plane can be used as a robust long-term disposal orbit. The current graveyard regions for end-of-life retirement of GEO payloads, which is several hundred kilometers above GEO depending on the spacecraft characteristics, cannot contain the newly discovered high area-to-mass ratio debris population. Such objects are highly susceptible to the effects of solar radiation pressure exhibiting dramatic variations in eccentricity and inclination over short periods of time. The Laplace plane graveyard, on the contrary, would trap this debris and would not allow these objects to rain down through GEO. Since placing a satellite in this inclined orbit can be expensive, we discuss some alternative disposal schemes that have acceptable cost-to-benefit ratios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号