首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper introduces a mission concept for active removal of orbital debris based on the utilization of the CubeSat form factor. The CubeSat is deployed from a carrier spacecraft, known as a mothership, and is equipped with orbital and attitude control actuators to attach to the target debris, stabilize its attitude, and subsequently move the debris to a lower orbit where atmospheric drag is high enough for the bodies to burn up. The mass and orbit altitude of debris objects that are within the realms of the CubeSat’s propulsion capabilities are identified. The attitude control schemes for the detumbling and deorbiting phases of the mission are specified. The objective of the deorbiting maneuver is to decrease the semi-major axis of the debris orbit, at the fastest rate, from its initial value to a final value of about 6471?km (i.e., 100?km above Earth considering a circular orbit) via a continuous low-thrust orbital transfer. Two case studies are investigated to verify the performance of the deorbiter CubeSat during the detumbling and deorbiting phases of the mission. The baseline target debris used in the study are the decommissioned KOMPSAT-1 satellite and the Pegasus rocket body. The results show that the deorbiting times for the target debris are reduced significantly, from several decades to one or two years.  相似文献   

2.
It is estimated that more than 22,300 human-made objects are in orbit around the Earth, with a total mass above 8,400,000 kg. Around 89% of these objects are non-operational and without control, which makes them to be considered orbital debris. These numbers consider only objects with dimensions larger than 10 cm. Besides those numbers, there are also about 2000 operational satellites in orbit nowadays. The space debris represents a hazard to operational satellites and to the space operations. A major concern is that this number is growing, due to new launches and particles generated by collisions. Another important point is that the development of CubeSats has increased exponentially in the last years, increasing the number of objects in space, mainly in the Low Earth Orbits (LEO). Due to the short operational time, CubeSats boost the debris population. One of the requirements for space debris mitigation in LEO is the limitation of the orbital lifetime of the satellites, which needs to be lower than 25 years. However, there are space debris with longer estimated decay time. In LEÓs, the influence of the atmospheric drag is the main orbital perturbation, and is used in maneuvers to increment the losses in the satellite orbital energy, to locate satellites in constellations and to accelerate the decay.The goal of the present research is to study the influence of aerodynamic rotational maneuver in the CubeSat?s orbital lifetime. The rotational axis is orthogonal to the orbital plane of the CubeSat, which generates variations in the ballistic coefficient along the trajectory. The maneuver is proposed to accelerate the decay and to mitigate orbital debris generated by non-operational CubeSats. The panel method is selected to determine the drag coefficient as a function of the flow incident angle and the spinning rate. The pressure distribution is integrated from the satellite faces at hypersonic rarefied flow to calculate the drag coefficient. The mathematical model considers the gravitational potential of the Earth and the deceleration due to drag. To analyze the effects of the rotation during the decay, multiple trajectories were propagated, comparing the results obtained assuming a constant drag coefficient with trajectories where the drag coefficient changes periodically. The initial perigees selected were lower than 400 km of altitude with eccentricities ranging from 0.00 to 0.02. Six values for the angular velocity were applied in the maneuver. The technique of rotating the spacecraft is an interesting solution to increase the orbit decay of a CubeSat without implementing additional de-orbit devices. Significant changes in the decay time are presented due to the increase of the mean drag coefficient calculated by the panel method, when the maneuver is applied, reducing the orbital lifetime, however the results are independent of the angular velocity of the satellite.  相似文献   

3.
立方星是一种模块化的微小卫星,在科学探测与专业人才培养等方面具有重要意义。针对目前立方星任务逐渐从近地轨道向深空扩展的发展趋势,以立方星月球深空任务为背景,利用商业器件设计并实现了初步的立方星姿态控制系统,以及姿态控制系统所必需的结构、电源、计算机等立方星子系统,同时给出了姿态测试平台的设计方案及其硬件实现。在所搭建硬件平台上,通过测量飞轮控制器的阻尼系数,对控制模型进行参数辨识与标定,获得了与数值仿真一致的实物测试结果。针对姿态控制系统设计了PD控制律,并在控制实验中实现了至任意姿态角的机动控制。  相似文献   

4.
基于线性协方差方法的交会对接误差分析   总被引:1,自引:0,他引:1  
将线性协方差分析方法和蒙特卡罗仿真相结合,按交会任务和飞行特征把交会过程分为变轨飞行、自由飞行和中途速度修正三种特征段,研究了状态误差的传播规律和交会过程中各种误差对交会对接精度的影响。在变轨飞行段,分析了追踪航天器的姿态误差、控制系统性能状态估计误差,以及目标航天器轨道摄动对状态误差传播的影响。在自由飞行段,分析了追踪航天器估计状态误差的先验值和测轨误差对状态误差传播的影响。在中途速度修正段,分析了追踪航天器姿态误差和控制系统性能误差对状态误差传播的影响。仿真结果表明,误差分析方法设计合理,可以指导交会对接的轨道设计工作,能对已经设计好的交会策略进行误差分析和设计验证。  相似文献   

5.
为了实现立方星在轨飞行与变轨,基于模块化推进器系统提出混合控制策略实现微小卫星轨道持续变化任务需求。首先,针对多单元立方星单一主推进器的结构部署,基于高斯变分方程采用连续低推进力实现轨道机动变化。为了实现对立方星主推进器的指向调整,基于姿态动力学模型利用PD连续姿态控制求得所需扭矩,实现对立方星的指向角和指向角速度调节。针对配置的微脉冲等离子推进器(μ-PPT)不连续的特点,通过搜寻μ PPT最优脉冲序列组合获得实际扭矩,满足对外部干扰的持续补偿以及立方星的姿态稳定和指向调整操作需求。此外,引入姿态误差敏感度阈值,使姿态控制器在能够提高系统鲁棒性的同时减少μ-PPT消耗。最后,通过对3U立方星在轨飞行与变轨的具体案例分析,表明所提出的基于微推进器系统的混合控制策略能够实现立方星轨道机动变化需求。  相似文献   

6.
Any vehicle propelled by solid rocket motors (SRMs) must include an attitude control system capable of dealing with the torque generated by thrust misalignment. In order to expand the application of SRMs on CubeSats, an attitude control system utilizing moving mass actuators is discussed. The present research develops an eight-degree-of-freedom simulation model of a 2U CubeSat with two moving mass actuators. That model also considers the influence of propellant combustion processes. By analyzing the model disturbance source and systematic coupling, the key layout parameters are designed and a simplified control model is proposed. The controller is derived based on a combination of backstepping and sliding mode techniques. An orbit maneuver from 300 km circular orbit to 300 and 500 km elliptical orbit using this attitude control system is verified.  相似文献   

7.
CubeSats has evolved from purely educational tools, to useful platforms for technology demonstration and many practical applications. This paper reviews a CubeSat constellation mission involving 3 CubeSats launched into orbit on Sep. 25th 2015, aiming to demonstrate the integrated application of low-cost CubeSat technologies with distributed payloads using a group of satellites, as well as to demonstrate several new technologies. The mission scenario, the satellite system design, the innovative technologies and instruments or devices used on the CubeSats and the in-orbit experimental results and the payload data analysis, as well as some experiences and lessons learned, are presented and summaried.  相似文献   

8.
CubeSats offer a flexible and low-cost option to increase the scientific and technological return of small-body exploration missions. ESA’s Hera mission, the European component of the Asteroid Impact and Deflection Assessment (AIDA) international collaboration, plans on deploying two CubeSats in the proximity of binary system 65803 Didymos, after arrival in 2027. In this work, we discuss the feasibility and preliminary mission profile of Hera’s Milani CubeSat. The CubeSat mission is designed to achieve both scientific and technological objectives. We identify the design challenges and discuss design criteria to find suitable solutions in terms of mission analysis, operational trajectories, and Guidance, Navigation, & Control (GNC) design. We present initial trajectories and GNC baseline, as a result of trade-off analyses. We assess the feasibility of the Milani CubeSat mission and provide a preliminary solution to cover the operational mission profile of Milani in the close-proximity of Didymos system.  相似文献   

9.
连续常值推力机动分析与应用   总被引:1,自引:0,他引:1  
连续常值推力机动是空间飞行常用的轨道机动方式。其中,小推力适合于地球轨道航天器交会机动,而切向或周向推力以及较大的正径向推力可用于脱离地球引力场的逃逸飞行,执行星际交会使命。应用常推力作用下的质心运动方程,对机动推力的量值没有限制;在航天器交会应用中,对相对距离也无要求。这种方法可直接获得向径、轨道速度等参数随时间或极角(绕地心的转动角)的变化,便于分析轨道转移与逃逸运动,有助于飞行使命与运动轨迹的设计。特别是,若机动转移的初轨为圆轨道,在推力较小、飞行时间不长的情况下,应用量纲1形式的运动方程,可获得具有工程应用价值的近似解。  相似文献   

10.
针对近地近圆轨道航天器交会任务,设计了基于经典轨道要素的远程快速自主制导算法.对于任意初始纬度幅角偏差的远程导引,通过建立纬度幅角偏差与半长轴偏差的关系,将远程导引段分为初始轨道飞行、调相轨道飞行和调整轨道飞行3个阶段.初始轨道飞行进行轨道共面修正和调相机动;在调相轨道飞行期间,进行自然调相以及调相轨道到调整轨道的机动;调整轨道飞行阶段进行追踪航天器的远地点高度和近地点高度的修正,以及再次共面修正.所有变轨机动都以制导脉冲的形式给出,并都在轨道特殊点执行.精确轨道仿真验证了远程快速自主接近制导算法的可行性.  相似文献   

11.
航天器交会飞行设计方法研究   总被引:2,自引:2,他引:0  
针对半自主飞行追踪星,阐述航天器交会总体设计方法。根据对接点的地理位置范围、共面轨道倾角以及目标星轨道周期与追踪星入轨点地理位置,确定交会飞行时间和两星初始相位差范围。考虑最小轨道机动动力要求与飞行轨迹安全性等因素,并兼顾地面测控条件,设计追踪星远程导引段与相对导航段的轨道机动与飞行轨迹,特别是选择与比较不同的初始轨道、调相轨道与漂移轨道以及保持点停泊时间与最终逼近段飞行时间等交会飞行要素,调整飞行时间、相位差与对接点位置,确定最佳交会飞行方案,完成空间交会任务。  相似文献   

12.
Orbital debris is known to pose a substantial threat to Earth-orbiting spacecraft at certain altitudes. For instance, the orbital debris flux near Sun-synchronous altitudes of 600–800 km is particularly high due in part to the 2007 Fengyun-1C anti-satellite test and the 2009 Iridium-Kosmos collision. At other altitudes, however, the orbital debris population is minimal and the primary impactor population is not man-made debris particles but naturally occurring meteoroids. While the spacecraft community has some awareness of the risk posed by debris, there is a common misconception that orbital debris impacts dominate the risk at all locations. In this paper, we present a damage-limited comparison between meteoroids and orbital debris near the Earth for a range of orbital altitude and inclination, using NASA’s latest models for each environment. Overall, orbital debris dominates the impact risk between altitudes of 600 and 1300 km, while meteoroids dominate below 270 km and above 4800 km.  相似文献   

13.
CubeSail is a nano-solar sail mission based on the 3U CubeSat standard, which is currently being designed and built at the Surrey Space Centre, University of Surrey. CubeSail will have a total mass of around 3 kg and will deploy a 5 × 5 m sail in low Earth orbit. The primary aim of the mission is to demonstrate the concept of solar sailing and end-of-life de-orbiting using the sail membrane as a drag-sail. The spacecraft will have a compact 3-axis stabilised attitude control system, which uses three magnetic torquers aligned with the spacecraft principle axis as well as a novel two-dimensional translation stage separating the spacecraft bus from the sail. CubeSail’s deployment mechanism consists of four novel booms and four-quadrant sail membranes. The proposed booms are made from tape-spring blades and will deploy the sail membrane from a 2U CubeSat standard structure. This paper presents a systems level overview of the CubeSat mission, focusing on the mission orbit and de-orbiting, in addition to the deployment, attitude control and the satellite bus.  相似文献   

14.
Accurate knowledge of the rotational dynamics of a large space debris is crucial for space situational awareness (SSA), whether it be for accurate orbital predictions needed for satellite conjunction analyses or for the success of an eventual active debris removal mission charged with stabilization, capture and removal of debris from orbit. In this light, the attitude dynamics of an inoperative satellite of great interest to the space debris community, the joint French and American spacecraft TOPEX/Poseidon, is explored. A comparison of simulation results with observations obtained from high-frequency satellite range measurements is made, showing that the spacecraft is currently spinning about its minor principal axis in a stable manner. Predictions of the evolution of its attitude motion to 2030 are presented, emphasizing the uncertainty on those estimates due to internal energy dissipation, which could cause a change of its spin state in the future. The effect of solar radiation pressure and the eddy-current torque are investigated in detail, and insights into some of the satellite’s missing properties are provided. These results are obtained using a novel, open-source, coupled orbit-attitude propagation software, the Debris SPin/Orbit Simulation Environment (D-SPOSE), whose primary goal is the study of the long-term evolution of the attitude dynamics of large space debris.  相似文献   

15.
An image-based servo controller for the guidance of a spacecraft during non-cooperative rendezvous is presented in this paper. The controller directly utilizes the visual features from image frames of a target spacecraft for computing both attitude and orbital maneuvers concurrently. The utilization of adaptive optics, such as zooming cameras, is also addressed through developing an invariant-image servo controller. The controller allows for performing rendezvous maneuvers independently from the adjustments of the camera focal length, improving the performance and versatility of maneuvers. The stability of the proposed control scheme is proven analytically in the invariant space, and its viability is explored through numerical simulations.  相似文献   

16.
空间交会V—bar接近冲量机动运动分析   总被引:2,自引:2,他引:2  
从相对运动与绝对运动两方面全面阐述空间交会V—bar接近冲量机动变轨的运动规律。交会接近段的起点与终点为绝对运动转移轨道通径的两个端点,转移轨道半长轴略大于机动变轨前的轨道半径,转移轨道偏心率以及追踪星对目标星缩减的地心角取决于径向速度增量,并给出视界角设计方法。  相似文献   

17.
As the role of missions and experiments carried out in outer space becomes more and more essential in our understanding of many earthly problems, such as resource management, environmental problems, and disaster management, as well as space science questions, thanks to their lower cost and faster development process CubeSats can benefit humanity and therefore, young scientists and engineers have been motivated to research and develop new CubeSat missions. Not very long after their inception, CubeSats have evolved to become accepted platforms for scientific and commercial applications. The last couple of years showed that they are a feasible tool for conducting scientific experiments, not only in the Earth orbit but also in the interplanetary space. For many countries, a CubeSat mission could prompt the community and young teams around the world to build the national capacity to launch and operate national space missions. This paper presents an overview of the key scientific and engineering gateways opened up to the younger scientific community by the advent and adaptation of new technology into CubeSat missions. The role of cooperation and the opportunities for capacity-building and education are also explored. Thus, the present article also aims to provide useful recommendations to scientists, early-career researchers, engineers, students, and anyone who intends to explore the potential and opportunities offered by CubeSats and CubeSats-based missions.   相似文献   

18.
Knowledge about the rotation properties of space debris objects is essential for the active debris removal missions, accurate re-entry predictions and to investigate the long-term effects of the space environment on the attitude motion change. Different orbital regions and object’s physical properties lead to different attitude states and their change over time.Since 2007 the Astronomical Institute of the University of Bern (AIUB) performs photometric measurements of space debris objects. To June 2016 almost 2000 light curves of more than 400 individual objects have been acquired and processed. These objects are situated in all orbital regions, from low Earth orbit (LEO), via global navigation systems orbits and high eccentricity orbit (HEO), to geosynchronous Earth orbit (GEO). All types of objects were observed including the non-functional spacecraft, rocket bodies, fragmentation debris and uncorrelated objects discovered during dedicated surveys. For data acquisition, we used the 1-meter Zimmerwald Laser and Astrometry Telescope (ZIMLAT) at the Swiss Optical Ground Station and Geodynamics Observatory Zimmerwald, Switzerland. We applied our own method of phase-diagram reconstruction to extract the apparent rotation period from the light curve. Presented is the AIUB’s light curve database and the obtained rotation properties of space debris as a function of object type and orbit.  相似文献   

19.
The guidance and control strategy for spacecraft rendezvous and docking are of vital importance, especially for a chaser spacecraft docking with a rotating target spacecraft. Approach guidance for docking maneuver in planar is studied in this paper. Approach maneuver includes two processes: optimal energy approach and the following flying-around approach. Flying-around approach method is presented to maintain a fixed relative distance and attitude for chaser spacecraft docking with target spacecraft. Due to the disadvantage of energy consumption and initial velocity condition, optimal energy guidance is presented and can be used for providing an initial state of flying-around approach process. The analytical expression of optimal energy guidance is obtained based on the Pontryagin minimum principle which can be used in real time. A couple of solar panels on the target spacecraft are considered as obstacles during proximity maneuvers, so secure docking region is discussed. A two-phase optimal guidance method is adopted for collision avoidance with solar panels. Simulation demonstrates that the closed-loop optimal energy guidance satisfies the ending docking constraints, avoids collision with time-varying rotating target, and provides the initial velocity conditions of flying-around approach maneuver. Flying-around approach maneuver can maintain fixed relative position and attitude for docking.  相似文献   

20.
PolarLight is a compact soft X-ray polarimeter onboard a CubeSat, which was launched into a low-Earth orbit on October 29, 2018. In March 2019, PolarLight started full operation, and since then, regular observations with the Crab nebula, Sco X-1, and background regions have been conducted. Here we report the operation, calibration, and performance of PolarLight in the orbit. Based on these, we discuss how one can run a low-cost, shared CubeSat for space astronomy, and how CubeSats can play a role in modern space astronomy for technical demonstration, science observations, and student training.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号