首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Modern hydrodynamical simulations offer nowadays a powerful means to trace the evolution of the X-ray properties of the intra-cluster medium (ICM) during the cosmological history of the hierarchical build up of galaxy clusters. In this paper we review the current status of these simulations and how their predictions fare in reproducing the most recent X-ray observations of clusters. After briefly discussing the shortcomings of the self-similar model, based on assuming that gravity only drives the evolution of the ICM, we discuss how the processes of gas cooling and non-gravitational heating are expected to bring model predictions into better agreement with observational data. We then present results from the hydrodynamical simulations, performed by different groups, and how they compare with observational data. As terms of comparison, we use X-ray scaling relations between mass, luminosity, temperature and pressure, as well as the profiles of temperature and entropy. The results of this comparison can be summarised as follows: (a) simulations, which include gas cooling, star formation and supernova feedback, are generally successful in reproducing the X-ray properties of the ICM outside the core regions; (b) simulations generally fail in reproducing the observed “cool core” structure, in that they have serious difficulties in regulating overcooling, thereby producing steep negative central temperature profiles. This discrepancy calls for the need of introducing other physical processes, such as energy feedback from active galactic nuclei, which should compensate the radiative losses of the gas with high density, low entropy and short cooling time, which is observed to reside in the innermost regions of galaxy clusters.  相似文献   

2.
The distribution of chemical elements in the hot intracluster medium (ICM) retains valuable information about the enrichment and star formation histories of galaxy clusters, and on the feedback and dynamical processes driving the evolution of the cosmic baryons. In the present study we review the progresses made so far in the modelling of the ICM chemical enrichment in a cosmological context, focusing in particular on cosmological hydrodynamical simulations. We will review the key aspects of embedding chemical evolution models into hydrodynamical simulations, with special attention to the crucial assumptions on the initial stellar mass function, stellar lifetimes and metal yields, and to the numerical limitations of the modelling. At a second stage, we will overview the main simulation results obtained in the last decades and compare them to X-ray observations of the ICM enrichment patterns. In particular, we will discuss how state-of-the-art simulations are able to reproduce the observed radial distribution of metals in the ICM, from the core to the outskirts, the chemical diversity depending on cluster thermo-dynamical properties, the evolution of ICM metallicity and its dependency on the system mass from group to cluster scales. Finally, we will discuss the limitations still present in modern cosmological, chemical, hydrodynamical simulations and the perspectives for improving the theoretical modelling of the ICM enrichment in galaxy clusters in the future.  相似文献   

3.
4.
This paper briefly reviews a few relevant features about the abundances of light elements (D, 4He, 6Li, 7Li, 9Be) in the Milky Way. It places special emphasis on metal-poor stars. Observational concerns are discussed. The use of 7Li and 6Li as cosmological probes and of 9Be as a chronometer for the early evolution of our Galaxy are discussed.  相似文献   

5.
Protoplanetary evolution is discussed in both its global and local aspects. The global turbulent evolution implies large scale average chemical fractionation and chondrule-sized grains as the building blocks of planetary and possibly also cometary material. Local processes such as electric discharges and associated flash heating of grains allow for chemical, mineralogical, and morphological alterations of the disk material. Large scale turbulence keeps the disk well stirred, however, time dependent (or intermittent) turbulence, associated with e.g. optical depth variations, could lead to dust sedimentation within the disk and subsequent planetesimal formation. Recent relevant astronomical observations of young T Tauri stars are briefly reviewed.  相似文献   

6.
We present models of the extragalactic background light (EBL) based on several scenarios of galaxy formation and evolution. We have treated galaxy formation with the Press-Schecter approximation for both cold dark matter (CDM) and cold+hot dark matter (CHDM) models, representing a moderate (z f 3) and a late (z f 1) era of galaxy formation respectively. Galaxy evolution has been treated by considering a variety of stellar types, different initial mass functions and star formation histories, and with an accounting of dust absorption and emission. We find that the dominant factor influencing the EBL is the epoch of galaxy formation. A recently proposed method for observing the EBL utilizing the absorption of 0.1 to 10 TeV gamma-rays from active galactic nuclei (AGN) is shown to be capable of discriminating between different galaxy formation epochs. The one AGN viewed in TeV light, Mrk 421, does show some evidence for a cutoff above 3 TeV; based on the EBL models presented here, we suggest that this is due to extinction in the source. The large absorption predicted at energies > 200 GeV for sources at z > 0.5 indicates that observations of TeV gamma-ray bursts (GRB) would constrain or eliminate models in which the GRB sources lie at cosmological distances.Now at University of Chicago, Dept. of Astronomy & Astrophysics.  相似文献   

7.
We briefly review some questions of extragalactic astrophysics and cosmology that would most benefit from future missions outside the Earth's atmosphere in the IR and submillimeter. These include the formation and early evolution phases in galaxies and the probably related question of quasar formation; the observation of Active Galactic Nuclei embedded in thick dusty structures (torii) and its impact on the still debated unified model of AGN activity; the observability of radiation processes occurring at very highz through background measurements; the investigation of the large scale structure and velocity field in the distant universe; and studies of the interstellar medium in galaxies. Some more emphasis is given on the galaxy formation problem, because we believe that IR-mm sensitive observations will be crucial to its final solution.  相似文献   

8.
Non-thermal components are key ingredients for understanding clusters of galaxies. In the hierarchical model of structure formation, shocks and large-scale turbulence are unavoidable in the cluster formation processes. Understanding the amplification and evolution of the magnetic field in galaxy clusters is necessary for modelling both the heat transport and the dissipative processes in the hot intra-cluster plasma. The acceleration, transport and interactions of non-thermal energetic particles are essential for modelling the observed emissions. Therefore, the inclusion of the non-thermal components will be mandatory for simulating accurately the global dynamical processes in clusters. In this review, we summarise the results obtained with the simulations of the formation of galaxy clusters which address the issues of shocks, magnetic field, cosmic ray particles and turbulence.  相似文献   

9.
Clusters of galaxies are self-gravitating systems of mass ∼1014–1015 h −1 M and size ∼1–3h −1 Mpc. Their mass budget consists of dark matter (∼80%, on average), hot diffuse intracluster plasma (≲20%) and a small fraction of stars, dust, and cold gas, mostly locked in galaxies. In most clusters, scaling relations between their properties, like mass, galaxy velocity dispersion, X-ray luminosity and temperature, testify that the cluster components are in approximate dynamical equilibrium within the cluster gravitational potential well. However, spatially inhomogeneous thermal and non-thermal emission of the intracluster medium (ICM), observed in some clusters in the X-ray and radio bands, and the kinematic and morphological segregation of galaxies are a signature of non-gravitational processes, ongoing cluster merging and interactions. Both the fraction of clusters with these features, and the correlation between the dynamical and morphological properties of irregular clusters and the surrounding large-scale structure increase with redshift. In the current bottom-up scenario for the formation of cosmic structure, where tiny fluctuations of the otherwise homogeneous primordial density field are amplified by gravity, clusters are the most massive nodes of the filamentary large-scale structure of the cosmic web and form by anisotropic and episodic accretion of mass, in agreement with most of the observational evidence. In this model of the universe dominated by cold dark matter, at the present time most baryons are expected to be in a diffuse component rather than in stars and galaxies; moreover, ∼50% of this diffuse component has temperature ∼0.01–1 keV and permeates the filamentary distribution of the dark matter. The temperature of this Warm-Hot Intergalactic Medium (WHIM) increases with the local density and its search in the outer regions of clusters and lower density regions has been the quest of much recent observational effort. Over the last thirty years, an impressive coherent picture of the formation and evolution of cosmic structures has emerged from the intense interplay between observations, theory and numerical experiments. Future efforts will continue to test whether this picture keeps being valid, needs corrections or suffers dramatic failures in its predictive power.  相似文献   

10.
Measurements below several MeV/nucleon from Wind/LEMT and ACE/ULEIS show that elements heavier than Zn (Z=30) can be enhanced by factors of ∼100 to 1000, depending on species, in 3He-rich solar energetic particle (SEP) events. Using the Solar Isotope Spectrometer (SIS) on ACE we find that even large SEP (LSEP) shock-accelerated events at energies from ∼10 to >100 MeV/nucleon are often very iron rich and might contain admixtures of flare seed material. Studies of ultra-heavy (UH) SEPs (with Z>30) above 10 MeV/nucleon can be used to test models of acceleration and abundance enhancements in both LSEP and 3He-rich events. We find that the long-term average composition for elements from Z=30 to 40 is similar to standard solar system values, but there is considerable event-to-event variability. Although most of the UH fluence arrives during LSEP events, UH abundances are relatively more enhanced in 3He-rich events, with the (34<Z<40)/O ratio on average more than 50 times higher in 3He-rich events than in LSEP events. At energies >10 MeV/nucleon, the most extreme event in terms of UH composition detected so far took place on 23 July 2004 and had a (34<Z<40)/O enhancement of ∼250–300 times the standard solar value.  相似文献   

11.
Observations carried out from the coronagraphs on board space missions (LASCO/SOHO, Solar Maximum and Skylab) and ground-based facilities (HAO/Mauna Loa Observatory) show that coronal mass ejections (CMEs) can be classified into two classes based on their kinematics evolution. These two classes of CMEs are so-called fast and slow CMEs. The fast CME starts with a high initial speed that remains more or less constant; it is also called the constant-speed CME. On the other hand, the slow CME starts with a low initial speed, but shows a gradual acceleration; it is also called the accelerated and slow CME. Low and Zhang [Astrophys. J. 564, L53–L56, 2002] suggested that these two classes of CMEs could be a result of a difference in the initial topology of the magnetic fields associated with the underlying quiescent prominences. A normal prominence magnetic field topology will lead to a fast CME, while an inverse quiescent prominence results in a slow CME, because of the nature of the magnetic reconnection processes. In a recent study given by Wu et al. [Solar Phys. 225, 157–175, 2004], it was shown that an inverse quiescent prominence magnetic topology also could produce a fast CME. In this study, we perform a numerical MHD simulation for CMEs occurring in both normal and inverse quiescent prominence magnetic topology. This study demonstrates three major physical processes responsible for destabilization of these two types of prominence magnetic field topologies that can launch CMEs. These three initiation processes are identical to those used by Wu et al. [Solar Phys. 225, 157–175, 2004]. The simulations show that both fast and slow CMEs can be initiated from these two different types of magnetic topologies. However, the normal quiescent prominence magnetic topology does show the possibility for launching a reconnection island (or secondary O-line) that might be thought of as a “CME’’.  相似文献   

12.
Galaxy clusters are ideal tracers of the large-scale structure and evolution of the universe. They are thus good probes for the matter content of the universe, the existence of dark matter, and for the statistics of the large-scale structure of the matter distribution. X-ray observations provide a very effective tool to characterize individual galaxy clusters as well as the cluster population. With the detailed analysis of X-ray observations of galaxy clusters the matter composition of clusters is obtained which can be taken as representative of the matter composition of the universe. Based on galaxy cluster surveys in X-rays a census of the galaxy cluster population and statistical measures of the spatial distribution of clusters is obtained. Comparison of the results with predictions from cosmological models yields interesting cosmological model constraints and in particular favours a low density universe.  相似文献   

13.
Mariner 10 measurements proved the existence of a large-scale internal magnetic field on Mercury. The observed field amplitude, however, is too weak to be compatible with typical convective planetary dynamos. The Lorentz force based on an extrapolation of Mariner 10 data to the dynamo region is 10−4 times smaller than the Coriolis force. This is at odds with the idea that planetary dynamos are thought to work in the so-called magnetostrophic regime, where Coriolis force and Lorentz force should be of comparable magnitude. Recent convective dynamo simulations reviewed here seem to resolve this caveat. We show that the available convective power indeed suffices to drive a magnetostrophic dynamo even when the heat flow though Mercury’s core–mantle boundary is subadiabatic, as suggested by thermal evolution models. Two possible causes are analyzed that could explain why the observations do not reflect a stronger internal field. First, toroidal magnetic fields can be strong but are confined to the conductive core, and second, the observations do not resolve potentially strong small-scale contributions. We review different dynamo simulations that promote either or both effects by (1) strongly driving convection, (2) assuming a particularly small inner core, or (3) assuming a very large inner core. These models still fall somewhat short of explaining the low amplitude of Mariner 10 observations, but the incorporation of an additional effect helps to reach this goal: The subadiabatic heat flow through Mercury’s core–mantle boundary may cause the outer part of the core to be stably stratified, which would largely exclude convective motions in this region. The magnetic field, which is small scale, strong, and very time dependent in the lower convective part of the core, must diffuse through the stagnant layer. Here, the electromagnetic skin effect filters out the more rapidly varying high-order contributions and mainly leaves behind the weaker and slower varying dipole and quadrupole components (Christensen in Nature 444:1056–1058, 2006). Messenger and BepiColombo data will allow us to discriminate between the various models in terms of the magnetic fields spatial structure, its degree of axisymmetry, and its secular variation.  相似文献   

14.
The Warm-Hot Intergalactic Medium (WHIM) is thought to contribute about 40–50% to the baryonic budget at the present evolution stage of the universe. The observed large scale structure is likely to be due to gravitational growth of density fluctuations in the post-inflation era. The evolving cosmic web is governed by non-linear gravitational growth of the initially weak density fluctuations in the dark energy dominated cosmology. Non-linear structure formation, accretion and merging processes, star forming and AGN activity produce gas shocks in the WHIM. Shock waves are converting a fraction of the gravitation power to thermal and non-thermal emission of baryonic/leptonic matter. They provide the most likely way to power the luminous matter in the WHIM. The plasma shocks in the WHIM are expected to be collisionless. Collisionless shocks produce a highly non-equilibrium state with anisotropic temperatures and a large differences in ion and electron temperatures. We discuss the ion and electron heating by the collisionless shocks and then review the plasma processes responsible for the Coulomb equilibration and collisional ionisation equilibrium of oxygen ions in the WHIM. MHD-turbulence produced by the strong collisionless shocks could provide a sizeable non-thermal contribution to the observed Doppler parameter of the UV line spectra of the WHIM.  相似文献   

15.
In this paper we review the possible radiation mechanisms for the observed non-thermal emission in clusters of galaxies, with a primary focus on the radio and hard X-ray emission. We show that the difficulty with the non-thermal, non-relativistic Bremsstrahlung model for the hard X-ray emission, first pointed out by Petrosian (Astrophys. J. 557, 560, 2001) using a cold target approximation, is somewhat alleviated when one treats the problem more exactly by including the fact that the background plasma particle energies are on average a factor of 10 below the energy of the non-thermal particles. This increases the lifetime of the non-thermal particles, and as a result decreases the extreme energy requirement, but at most by a factor of three. We then review the synchrotron and so-called inverse Compton emission by relativistic electrons, which when compared with observations can constrain the value of the magnetic field and energy of relativistic electrons. This model requires a low value of the magnetic field which is far from the equipartition value. We briefly review the possibilities of gamma-ray emission and prospects for GLAST observations. We also present a toy model of the non-thermal electron spectra that are produced by the acceleration mechanisms discussed in an accompanying paper Petrosian and Bykov (Space Sci. Rev., 2008, this issue, Chap. 11).  相似文献   

16.
This paper presents a numerical analysis of the incompressible flow at Reynolds number 6.0×104 around the Selig–Donovan 7003 airfoil. The airfoil performances have been computed by the Reynolds averaged Navier–Stokes equations and large eddy simulations. The airfoil stall and preliminary post-stall have been obtained by both the methods. Some limitations of the RANS turbulence models for low-Reynolds number flows have been overcome by the κω SST-LR model, a recent modification of the well-known SST model. Large-eddy simulations have also been performed for a more detailed analysis of the results. The relevance in the stall mechanism of the laminar separation bubble arising on the airfoil is highlighted. The stall occurs when the laminar bubble present in the leading edge zone and a separated region forming on the central part of the airfoil join together. The κω SST-LR model returns the same stall mechanism as the large eddy simulation. Flows at low-Reynolds numbers can be simulated by the RANS methods, but the choice of the turbulence model is crucial. The κω SST-LR model has provided results in good agreement with the large eddy simulation and the available experimental data.  相似文献   

17.
Using high-resolution mass spectrometers on board the Advanced Composition Explorer (ACE), we surveyed the event-averaged ∼0.1–60 MeV/nuc heavy ion elemental composition in 64 large solar energetic particle (LSEP) events of cycle 23. Our results show the following: (1) The Fe/O ratio decreases with increasing energy up to ∼10 MeV/nuc in ∼92% of the events and up to ∼60 MeV/nuc in ∼64% of the events. (2) The rare isotope 3He is greatly enhanced over the corona or the solar wind values in 46% of the events. (3) The heavy ion abundances are not systematically organized by the ion’s M/Q ratio when compared with the solar wind values. (4) Heavy ion abundances from C–Fe exhibit systematic M/Q-dependent enhancements that are remarkably similar to those seen in 3He-rich SEP events and CME-driven interplanetary (IP) shock events. Taken together, these results confirm the role of shocks in energizing particles up to ∼60 MeV/nuc in the majority of large SEP events of cycle 23, but also show that the seed population is not dominated by ions originating from the ambient corona or the thermal solar wind, as previously believed. Rather, it appears that the source material for CME-associated large SEP events originates predominantly from a suprathermal population with a heavy ion enrichment pattern that is organized according to the ion’s mass-per-charge ratio. These new results indicate that current LSEP models must include the routine production of this dynamic suprathermal seed population as a critical pre-cursor to the CME shock acceleration process.  相似文献   

18.
Yan  Yihua  Huang  Guangli 《Space Science Reviews》2003,107(1-2):111-118
The Bastille-day event in 2000 produced energetic 3B/X5.6 flare with a halo CME, which had great geo-effects consequently. This event has been studied extensively and it is considered that it follows the two-ribbon flare model. The flare/CME event was triggered by an erupting filament and TRACE observations showed formation of giant arcade structures during the flare process. Hard X-ray (HXR) two ribbons revealed for the first time in this flare event (Masuda et al., 2001). The reconstruction of 3-D coronal magnetic fields revealed a magnetic flux rope structure, for the first time, from extrapolation of observed photospheric vector magnetogram data and the flux rope structure was co-spatial with portion of the filament and a UV bright lane (Yan et al., 2001a, 2001b). Here we review some recent work related to the flux rope structure and the HXR two ribbons by comparing their locations and the flux temporal profiles during the flare process so as to understand the energy release and particle accelerations. It is proposed that the rope instability may have triggered the flare event, and reconnection may occur during this process. The drifting pulsation structure in the decimetric frequency range is considered to manifest the rope ejection, or the initial phase of the coronal mass ejection. The HXR two ribbons were distributed along the flux rope and the rope foot points coincide with HXR sources. The energy dissipation from IPS observations occurred within about 100 R is consistent with the estimate for the flux rope system. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
Reconnection is a major commonality of solar and magnetospheric physics. It was conjectured by Giovanelli in 1946 to explain particle acceleration in solar flares near magnetic neutral points. Since than it has been broadly applied in space physics including magnetospheric physics. In a special way this is due to Harry Petschek, who in 1994 published his ground breaking solution for a 2D magnetized plasma flow in regions containing singularities of vanishing magnetic field. Petschek’s reconnection theory was questioned in endless disputes and arguments, but his work stimulated the further investigation of this phenomenon like no other. However, there are questions left open. We consider two of them – “anomalous” resistivity in collisionless space plasma and the nature of reconnection in three dimensions. The CLUSTER and SOHO missions address these two aspects of reconnection in a complementary way -- the resistivity problem in situ in the magnetosphere and the 3D aspect by remote sensing of the Sun. We demonstrate that the search for answers to both questions leads beyond the applicability of analytical theories and that appropriate numerical approaches are necessary to investigate the essentially nonlinear and nonlocal processes involved. Necessary are both micro-physical, kinetic Vlasov-equation based methods of investigation as well as large scale (MHD) simulations to obtain the geometry and topology of the acting fields and flows.  相似文献   

20.
The James Webb Space Telescope   总被引:4,自引:0,他引:4  
The James Webb Space Telescope (JWST) is a large (6.6 m), cold (<50 K), infrared (IR)-optimized space observatory that will be launched early in the next decade into orbit around the second Earth–Sun Lagrange point. The observatory will have four instruments: a near-IR camera, a near-IR multiobject spectrograph, and a tunable filter imager will cover the wavelength range, 0.6 < ; < 5.0 μ m, while the mid-IR instrument will do both imaging and spectroscopy from 5.0 < ; < 29 μ m.The JWST science goals are divided into four themes. The key objective of The End of the Dark Ages: First Light and Reionization theme is to identify the first luminous sources to form and to determine the ionization history of the early universe. The key objective of The Assembly of Galaxies theme is to determine how galaxies and the dark matter, gas, stars, metals, morphological structures, and active nuclei within them evolved from the epoch of reionization to the present day. The key objective of The Birth of Stars and Protoplanetary Systems theme is to unravel the birth and early evolution of stars, from infall on to dust-enshrouded protostars to the genesis of planetary systems. The key objective of the Planetary Systems and the Origins of Life theme is to determine the physical and chemical properties of planetary systems including our own, and investigate the potential for the origins of life in those systems. Within these themes and objectives, we have derived representative astronomical observations.To enable these observations, JWST consists of a telescope, an instrument package, a spacecraft, and a sunshield. The telescope consists of 18 beryllium segments, some of which are deployed. The segments will be brought into optical alignment on-orbit through a process of periodic wavefront sensing and control. The instrument package contains the four science instruments and a fine guidance sensor. The spacecraft provides pointing, orbit maintenance, and communications. The sunshield provides passive thermal control. The JWST operations plan is based on that used for previous space observatories, and the majority of JWST observing time will be allocated to the international astronomical community through annual peer-reviewed proposal opportunities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号