首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Hueso  Ricardo  Guillot  Tristan 《Space Science Reviews》2003,106(1-4):105-120
The formation of planetary systems is intimately tied to the question of the evolution of the gas and solid material in the early nebula. Current models of evolution of circumstellar disks are reviewed here with emphasis on the so-called “alpha models” in which angular momentum is transported outward by turbulent viscosity, parameterized by an dimensionless parameter α. A simple 1D model of protoplanetary disks that includes gas and embedded particles is used to introduce key questions on planetesimal formation. This model includes the aerodynamic properties of solid ice and rock grains to calculate their migration and growth. We show that the evolution of the nebula and migration and growth of its solids proceed on timescales that are generally not much longer than the timescale necessary to fully form the star-disk system from the molecular cloud. Contrary to a widely used approach, planet formation therefore can neither be studied in a static nebula nor in a nebula evolving from an arbitrary initial condition. We propose a simple approach to both account for sedimentation from the molecular cloud onto the disk, disk evolution and migration of solids. Giant planets have key roles in the history of the forming Solar System: they formed relatively early, when a significant amount of hydrogen and helium were still present in the nebula, and have a mass that is a sizable fraction of the disk mass at any given time. Their composition is also of interest because when compared to the solar composition, their enrichment in elements other than hydrogen and helium is a witness of sorting processes that occured in the protosolar nebula. We review likely scenarios capable of explaining both the presence of central dense cores in Jupiter, Saturn, Uranus and Neptune and their global composition. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
Pepin  R.O. 《Space Science Reviews》2003,106(1-4):211-230
Two fractionation models are applied to the problem of generating the widely distributed “Q-component” noble gases in meteorites from the solar-like isotopic and elemental compositions that presumably characterized the early solar accretion disk. Noble gas fractionation by mass-dependent dissipation of the solar nebula, as suggested by Ozima et al. (1998), is examined in the context of a model developed by Johnstone et al. (1998) for accretion disk photoevaporation driven by intense UV radiation from a neighboring giant star. Hydrodynamic escape of heavier species entrained in hydrogen outflow from the UV-heated outer regions of the disk can generate substantial noble gas fractionations, but they do not match the observed Q-component isotopic pattern and moreover require the physically unrealistic assumption that the fractionated gases are confined to the heated disk boundary zone, without mixing with the interior nebula, for long periods of time. It seems more likely that hydrodynamic outflow is actually established below this zone, in the body of the disk. In this case fractionations are governed by Rayleigh distillation of the entire remaining nebula, and are negligible at the time when disk erosion is halted by the gravitational potential of the young sun embedded in the disk. A “local” model of noble gas fractionation by hydrodynamic blowoff of transient, methane-rich atmospheres outgassed from the interiors of large primitive planetesimals (Pepin, 1991) is updated and assessed against current data. Degassed atmospheres are assumed to contain isotopically solar noble gases except for an additional nucleogenic Xe component that contributes primarily to the two heaviest isotopes; there is evidence that this same component is present at varying levels in other solar-system volatile reservoirs, possibly reflecting a compositional change with time in the solar nebula. Single fixed values for the two free parameters in the blowoff modeling equations can generate fractionated Xe, Kr, Ar and Ne compositions in the residual atmosphere that closely match observed meteoritic isotopic distributions, and Q-gas elemental ratios are approximated by adsorption of fractionated gases on planetesimal surface grains using plausible values of relative Henry Law constants. Additional requirements for adsorption of sufficient absolute amounts of Q-gases on carrier grains, and their subsequent ejection to space, mixing in the nebula, and dispersal into meteorite bodies, are examined in the context of current models for body sizes and dynamical evolution in an early mass-rich asteroid belt (Chambers and Wetherill, 2001). Despite its ability to replicate isotopic compositions, uncertainties about the environments in which the blowoff model can successfully operate suggest that there is, as yet, no entirely satisfactory understanding of how the Q-component noble gases might have evolved from solar-like precursor compositions. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
We are making precise determinations of the abundance of the light isotope of helium, 3He. The 3He abundance in Milky Way sources impacts stellar evolution, chemical evolution, and cosmology. The abundance of 3He is derived from measurements of the hyperfine transition of 3He+ which has a rest wavelength of 3.46 cm (8.665 GHz). As with all the light elements, the present interstellar 3He abundance results from a combination of Big Bang Nucleosynthesis (BBNS) and stellar nucleosynthesis. We are measuring the 3He abundance in Milky Way H ii regions and planetary nebulae (PNe). The source sample is currently comprised of 60 H ii regions and 12 PNe. H ii regions are examples of zero-age objects that are young relative to the age of the Galaxy. Therefore their abundances chronicle the results of billions of years of Galactic chemical evolution. PNe probe material that has been ejected from low-mass (M≤ 2M ) to intermediate-mass (M∼2–5M ) stars to be further processed by future stellar generations. Because the Milky Way ISM is optically thin at centimeter wavelengths, our source sample probes a larger volume of the Galactic disk than does any other light element tracer of Galactic chemical evolution. The sources in our sample possess a wide range of physical properties (including object type, size, temperature, excitation, etc.). The 3He abundances we derive have led to what has been called “The 3He Problem”.  相似文献   

4.
Connerney  J.E.P.  Acuña  M.H.  Ness  N.F.  Spohn  T.  Schubert  G. 《Space Science Reviews》2004,111(1-2):1-32
Mars lacks a detectable magnetic field of global scale, but boasts a rich spectrum of magnetic fields at smaller spatial scales attributed to the spatial variation of remanent magnetism in the crust. On average the Mars crust is 10 times more intensely magnetized than that of the Earth. It appears likely that the Mars crust acquired its remanence in the first few hundred million years of evolution when an active dynamo sustained an intense global field. An early dynamo era, ending in the Noachian, or earliest period of Mars chronology, would likely be driven by thermal convection in an early, hot, fluid core. If crustal remanence was acquired later in Mars history, a dynamo driven by chemical convection associated with the solidification of an inner core is likely. Thermal evolution models cannot yet distinguish between these two possibilities. The magnetic record contains a wealth of information on the thermal evolution of Mars and the Mars dynamo, but we have just begun to decipher its message.  相似文献   

5.
Solar Nebula Magnetohydrodynamics   总被引:1,自引:0,他引:1  
The dynamical state of the solar nebula depends critically upon whether or not the gas is magnetically coupled. The presence of a subthermal field will cause laminar flow to break down into turbulence. Magnetic coupling, in turn, depends upon the ionization fraction of the gas. The inner most region of the nebula (≲0.1 AU) is magnetically well-coupled, as is the outermost region (≳10 AU). The magnetic status of intermediate scales (∼1 AU) is less certain. It is plausible that there is a zone adjacent to the inner disk in which turbulent heating self-consistently maintains the requisite ionization levels. But the region adjacent to the active outer disk is likely to be magnetically ``dead.' Hall currents play a significant role in nebular magnetohydrodynamics. Though still occasionally argued in the literature, there is simply no evidence to support the once standard claim that differential rotation in a Keplerian disk is prone to break down into shear turbulence by nonlinear instabilities. There is abundant evidence—numerical, experimental, and analytic—in support of the stabilizing role of Coriolis forces. Hydrodynamical turbulence is almost certainly not a source of enhanced turbulence in the solar nebula, or in any other astrophysical accretion disk. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
基于材料微观特性的涡轮盘疲劳裂纹萌生寿命数值仿真   总被引:4,自引:0,他引:4  
牟园伟  陆山 《航空学报》2013,34(2):282-290
 为了研究材料微观特性对结构疲劳寿命的影响,根据Tanaka-Mura疲劳裂纹萌生寿命计算理论,模拟某镍基粉末合金涡轮盘喉道表面疲劳裂纹萌生寿命。利用泰森多边形生成法,模拟微观多晶结构,建立宏-细观模型相结合的三维仿真模型。实现3项关键技术:1)在三维模型中模拟了面心立方晶体中{111}面族的12条主滑移系;2)应用缺口根部裂纹萌生的Tanaka-Mura理论模型模拟一条微裂纹在另一条裂纹尖端萌生;3)模拟了微裂纹的起裂、扩展与联合过程,最终形成一条宏观裂纹。对某表面带刀痕涡轮盘疲劳裂纹萌生寿命数值仿真结果与真盘试验结果相差20%。研究表明,减小晶粒尺寸、降低表面粗糙度、形成表面压缩残余应变以及析出沉淀颗粒都有利于提高涡轮盘的疲劳裂纹萌生寿命。  相似文献   

7.
Prantzos  N. 《Space Science Reviews》1998,84(1-2):225-236
A brief review is presented of our current understanding of the evolution of the Milky Way disk and of its relevance to "cosmic chemical evolution" studies. The implications of this understanding for the evolution of deuterium are emphasized.  相似文献   

8.
Analysis of UV spectra obtained with the HST, FUSE and other satellites provides a new understanding of the deuterium abundance in the local region of the galactic disk. The wide range of gas-phase D/H measurements obtained outside of the Local Bubble can now be explained as due to different amounts of deuterium depletion on carbonaceous grains. The total D/H ratio including deuterium in the gas and dust phases is at least 23 parts per million of hydrogen, which is providing a challenge to models of galactic chemical evolution. Analysis of HST and ground-based spectra of many lines of sight to stars within the Local Bubble have identified interstellar velocity components that are consistent with more than 15 velocity vectors. We have identified the structures of 15 nearby warm interstellar clouds on the basis of these velocity vectors and common temperatures and depletions. We estimate the distances and masses of these clouds and compare their locations with cold interstellar clouds.  相似文献   

9.
Variations in the magnetic pressure and flux blocking by starspots during the magnetic cycle of the cool semidetached component of an Algol binary may cause cyclic changes in the quadrupole moment and moment of inertia of the star which can cause alternate period changes. Since several different processes and timescales are involved, the orbital period changes may not correlate strongly with the indicators of magnetic activity. The structural changes in the semidetached component can also modulate the mass transfer rate. Sub-Keplerian velocities, supersonic turbulence, and high temperature regions in circumstellar material around the accreting star may all be a consequence of magnetic fields embedded in the flow. Models for the evolution of Algols which include the effects of angular momentum loss (AML) through a magnetized wind may have underestimated the AML rate by basing it on results from main sequence stars. Evolved stars appear to have higher AML rates, and there may be additional AML in a wind from the accretion disk.  相似文献   

10.
Variations in the magnetic pressure and flux blocking by starspots during the magnetic cycle of the cool semidetached component of an Algol binary may cause cyclic changes in the quadrupole moment and moment of inertia of the star which can cause alternate period changes. Since several different processes and timescales are involved, the orbital period changes may not correlate strongly with the indicators of magnetic activity. The structural changes in the semidetached component can also modulate the mass transfer rate. Sub-Keplerian velocities, supersonic turbulence, and high temperature regions in circumstellar material around the accreting star may all be a consequence of magnetic fields embedded in the flow. Models for the evolution of Algols which include the effects of angular momentum loss (AML) through a magnetized wind may have underestimated the AML rate by basing it on results from main sequence stars. Evolved stars appear to have higher AML rates, and there may be additional AML in a wind from the accretion disk.  相似文献   

11.
12.
Terrestrial planets are accreted in a disk orbiting a central star. The basic challenge of their formation consists of assembling micron-sized or smaller dust grains to bodies with over 104 km in diameter. This formation process, ultimately based on collisions, occurs in three very different physical regimes depending upon the size of the bodies present: 1) Early on, micron- to mm-sized dust grains, chondrules and chondrites are strongly coupled to the gas. 2) As they grow larger, gravity increases the collisional cross section allowing runaway growth to occur. 3) After this runaway phase stops from exhaustion of matter in the immediate surroundings of the protoplanets, further growth occurs on timescales typical of mutual gravitational perturbations. The emphasis of this book is on the timescales corresponding to these formation phases as well as the characteristic chemical and isotopic composition of the bodies involved. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
On an astronomical scale cosmic rays must be considered a tenuous and extremely hot (relativistic) gas. The pressure of the cosmic-ray gas is comparable to the other gas and field pressures in interstellar space, so that the cosmic-ray pressure must be taken into account in treating the dynamical properties of the gaseous disk of the galaxy. This review begins with a survey of present knowledge of the cosmic-ray gas. Then the kinetic properties of the gas are developed, followed by an exposition of the dynamical effects of the cosmic-ray gas on a large-scale magnetic field embedded in a thermal gas. The propagation of low-frequency hydromagnetic waves is worked out in the fluid approximation.The dynamical properties of the gaseous disk of the galaxy are next considered. The equations for the equilibrium distribution in the direction perpendicular to the disk are worked out. It is shown that a self-consistent equilibrium can be constructed within the range of the observational estimates of the gas density, scale height, turbulent velocity, field strength, cosmic-ray pressure, and galactic gravitational acceleration. Perturbation calculations then show that the equilibrium is unstable, on scales of a few hundred pc and in times of the order 2 × 107 years. The instability is driven about equally by the magnetic field and the cosmic-ray gas and dominates self-gravitation. Hence the instability dominates the dynamics of the interstellar gas and is the major effect in forming interstellar gas clouds. Star formation is the end result of condensation of the interstellar gas into clouds, indicating, then, that cosmic rays play a major role in initiating star formation in the galaxy.The cosmic rays are trapped in the unstable gaseous disk and escape from the disk only in so far as their pressure is able to inflate the magnetic field of the disk. The observed scale height of the galactic disk, the short life (106 years) of cosmic-ray particles in the disk of the galaxy, and their observed quiescent state in the disk, indicate that the galactic magnetic field acts as a safety valve on the cosmic ray pressure P so that PB 2/8. We infer from the observed life and quiescence of the cosmic rays that the mean field strength in the disk of the galaxy is 3–5 × 10–6 gauss.  相似文献   

14.
Primitive meteorites and interplanetary dust particles contain small quantities of dust grains with highly anomalous isotopic compositions. These grains formed in the winds of evolved stars and in the ejecta of stellar explosions, i.e., they represent a sample of circumstellar grains that can be analyzed with high precision in the laboratory. Such studies have provided a wealth of information on stellar evolution and nucleosynthesis, Galactic chemical evolution, grain growth in stellar environments, interstellar chemistry, and the inventory of stars that contributed dust to the Solar System. Among the identified circumstellar grains in primitive solar system matter are diamond, graphite, silicon carbide, silicon nitride, oxides, and silicates. Circumstellar grains have also been found in cometary matter. To date the available information on circumstellar grains in comets is limited, but extended studies of matter returned by the Stardust mission may help to overcome the existing gaps.  相似文献   

15.
Maps of the corona, obtained at meter wavelengths with the Nançay Radioheliograph (France), are used to study, on the disk, the radio counterpart of the coronal plasma sheet observed in K-corona on the limb. We study here the evolution of the coronal plasma sheet from the maximum of the activity cycle in 1980 to the minimum in 1986 and identify some of its large scale structures.  相似文献   

16.
Comets with a high content of organics and light molecules are expected under cosmic radiation to gain a relatively unreactive crust and less volatile material to some ten metres deep. Interstellar dust impacts act to loosen and turn over 1 cm of the surface. We discuss how far this accords with observations of cometary dust halos and new versus old comets. Two key material properties have emerged from recent studies. Firstly, the source of cometary volatiles is not ice in the sense of material with a single sublimation energy. Secondly, the particulates are not simply mineral dust but include much organic material, some of which undergoes chemical processing and exchanges with the gaseous environment. Consistent with these properties, a coherent crust rather than a mantle of loose grains would build up to cover much of the nucleus of periodic comets. It would consolidate by cooking in the solar radiation, especially at peak temperatures around perihelion. There are two disjoint surface phases: one of volatile material, the other the refractory crust, the former deepening into crater-like hollows over successive apparitions. The transition to non-volatile crust is unstable, subject to competing consolidation and disruption processes, and sensitive to seasonal changes. A comet dims and becomes asteroidal as the inert crust extends over the erosion craters, and may only be rejuvenated via collision with a boulder-sized impactor or perturbation of the orbit to smaller perihelion distance.  相似文献   

17.
吴丁毅  刘松龄 《航空动力学报》1988,3(2):135-139,187
本文将边界层方程无因次化,用“BOX”算法求解。研究计算了转动园盘上层流区、过渡区和紊流区的扭矩系数和局部换热系数以及变物性的影响,并研究了适合计算转盘问题的双层紊流模型。  相似文献   

18.
The surface morphology of icy moons is affected by several processes implicating exchanges between their subsurfaces and atmospheres (if any). The possible exchange of material between the subsurface and the surface is mainly determined by the mechanical properties of the lithosphere, which isolates the deep, warm and ductile ice material from the cold surface conditions. Exchanges through this layer occur only if it is sufficiently thin and/or if it is fractured owing to tectonic stresses, melt intrusion or impact cratering. If such conditions are met, cryomagma can be released, erupting fresh volatile-rich materials onto the surface. For a very few icy moons (Titan, Triton, Enceladus), the emission of gas associated with cryovolcanic activity is sufficiently large to generate an atmosphere, either long-lived or transient. For those moons, atmosphere-driven processes such as cryovolcanic plume deposition, phase transitions of condensable materials and wind interactions continuously re-shape their surfaces, and are able to transport cryovolcanically generated materials on a global scale. In this chapter, we discuss the physics of these different exchange processes and how they affect the evolution of the satellites’ surfaces.  相似文献   

19.
We discuss the results from a chemical evolution model of the local galactic disk which takes into account stellar yields, lifetimes, remnants, and supernova progenitor masses which depend on the initial metallicity of the collapsing clouds. The detailed evolution of H, He, C, O, Fe, and of the heavy elements (Z) is followed dropping the instantaneous recycling approximation. Our results reproduce the majority of the observational constraints.  相似文献   

20.
We review our recent results of Alfvén wave-driven winds. First, we present the result of self-consistent 1D MHD simulations for solar winds from the photosphere to interplanetary region. Here, we emphasize the importance of the reflection of Alfvén waves in the density stratified corona and solar winds. We also introduce the recent Hinode observation that might detect the reflection signature of transverse (Alfvénic) waves by Fujimura and Tsuneta (Astrophys. J. 702:1443, 2009). Then, we show the results of Alfvén wave-driven winds from red giant stars. As a star evolves to the red giant branch, the properties of stellar winds drastically change from steady coronal winds to intermittent chromospheric winds. We also discuss how the stellar evolution affects the wave reflection in the stellar atmosphere and similarities and differences of accretion disk winds by MHD turbulence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号