首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
HF radio wave observations have been carried out with an oblique ionospheric sounding (OIS) method on the radio path from St. Petersburg to Longyearbyen (Svalbard), and experimental ionograms were obtained for December 2001. These ionograms have been analysed to investigate the impact of the main ionospheric trough (MIT) and magnetic disturbances on the signals on this path. The observations during weakly disturbed (Kр = 2) magnetic conditions on 14–15 December 2001 were compared with predictions from ray-tracing through a numerical model of the ionosphere. The ray-tracing computer program synthesizes the OIS ionograms by means of the “shooting method”. This method calculates trajectories of HF radio waves for different values of elevation angle and transmission frequency. There was a variety of calculated trajectories, from which we choose those which reach the receiver, and the selected paths provide a synthesis of the oblique ionograms. To simulate HF radio wave propagation, we apply a three-dimensional distribution of the electron density calculated with the mathematical model of the high-latitude ionosphere developed in the Polar Geophysical Institute (PGI). These numerical simulations permit us to interpret specific peculiarities of the OIS data such as abnormal propagation modes, increased delays of signals, enhanced MOF (maximum observed frequency) values etc. New results of the study are summarised as follows. (1) An unusual feature of the propagation along the path is the change of propagation mechanism during substorms on entering a path midpoint (or 1-hop reflection point) to the MIT. (2) Even weak substorms, having the distinguished intensities, lead to the appearance of different types of irregularities observed by the CUTLASS radar and therefore to the different propagation modes and F2MOF values. (3) The PGI model of the ionosphere was first used for ray-tracing at high latitudes. The model results are basically in a good qualitative agreement with experimental observations. This model provides the satisfactory agreement between the calculated and experimental F2MOF values while not correctly representing the fine structure of the experimental OIS ionograms at night. An agreement between the calculated and experimental data is better for day and evening hours than at night.  相似文献   

2.
For the magnetospheric storm of May 14–16, 1997 geophysical data of satellites DMSP and IMP-8 are compared with data of radio propagation on the high-latitude HF radio path of Heiss Island – St. Petersburg and data from European ionosondes. Peculiarities of variations of the operational frequencies range MOF–LOF (maximum and lowest observed frequencies) on the path were considered. The range has been determined by the method of oblique ionospheric sounding (OIS). The latter is more informative for observations during a magnetic storm compared to the vertical sounding method. Nevertheless, an analysis of variations of the critical frequency of the ionospheric F2 layer from the chain of European ionosondes was carried out. For interpretation of results, data of magnetospheric parameters, AE-indexes and riometer data were used. The variations of both frequency range on the path and critical frequencies of the F2 layer through the ionosondes chain during the disturbed period had certain regularities of behaviour. These regularities are being explained from the physical point of view. The analysis of the satellite DMSP data has showed that a magnetospheric disturbance causes displacement equatorward of precipitation and some growth of its width and energy.  相似文献   

3.
The Digital Radio Mondiale (DRM), one of the new digital radio broadcasting standards, has been designed to overcome typical short wave radio channel difficulties, such as the multipath propagation and fast temporal changes of the received signal level, both related to the properties of the ionosphere along the path of propagation. In particular, some of the RF carriers used in the applied COFDM transmission technique serve to estimate the current state of the radio channel to enable the proper demodulation of the received signal.We have been detecting such RF carriers on select frequency channels (standard DRM broadcast) using a network of recording stations located in different parts of Poland in order to collect data on the HF radio channel. We have been also evaluating the usefulness of this procedure in providing information on the current state of the ionosphere in the refraction region between the transmitter and receivers. When the DRM system becomes more widespread, this method can supplement data that comes from the ionosondes, since it does not require much financial resources and the receivers can be easily scattered over a large area. This paper presents a set of experimental data and its analysis.  相似文献   

4.
High frequency (HF) communication is strongly dependent on the state of the ionosphere, which specifies the mode structure of the radio wave propagating in ionosphere. Another core factor defining the strength of the HF signal at the receiving site is the ionospheric absorption. Accurate modelling the effect of absorption is an essential part of many studies of the HF propagation in the ionosphere.This paper proposes a method for estimating the absorption. The method is based on analysis of vertical sounding ionograms. The main idea of the approach is to compare the main parameters retrieved from measured and simulated ionograms. The combination of Global Ionospheric Radio Observatory (GIRO, http://giro.uml.edu) data and ionograms modelling allows for developing the empiric absorption model available at near real-time. The ionogram simulation taking into account absorption utilizes the NIM-RT (North Ionospheric Model and Ray Tracing) software. As a result, the proposed technique provides more reliable and accurate evaluation of minimum frequency at which echoes are observed in vertical incidence ionosonde soundings. The values of these frequencies should be used in the following simulation to optimize parameters in the empirical formulae for defining absorption HF wave in ionosphere.The ultimate objective of this work is the designing the method, which allows the simulating of HF radio channel accounting for regular absorption due to UV radiation of the Sun. Eventually it could be considered as some kind of the HF propagation forecasting.  相似文献   

5.
To examine the quality and propagation characteristics of the Very Low Frequency (VLF) radio waves in a very long propagation path, Indian Centre for Space Physics, Kolkata, participated in the 27th Indian scientific expedition to Antarctica during 2007–2008. One Stanford University made AWESOME VLF receiving system was installed at the Indian Antarctic station Maitri and about five weeks of data were recorded successfully from the Indian transmitter VTX and several other transmitting stations worldwide. The quality of the signal from the VTX transmitter was found to be very good, consistent and highly stable in day and night. The signal shows the evidences of the presence of the 24 h solar radiation in the Antarctic region during local summer. Here we report the both narrow band and broadband VLF observations from this site. The diurnal variations of VTX signal (18.2 kHz) are presented systematically for Antarctica path and also compared the same with the variations for a short propagation path (VTX-Kolkata). We compute the spatial distribution of the VTX signal along the VTX-Antarctica path using the most well-known LWPC model for an all-day and all-night propagation conditions. The calculated signal amplitudes corresponding to those conditions relatively corroborate the observations. We also present the attenuation rate of the dominant waveguide modes corresponding to those propagation conditions where the effects of the Antarctic polar ice on the attenuation of different propagating waveguide modes are visible.  相似文献   

6.
The article presents the results of the observation of a strong magnetic storm and two X-ray flares during the summer solstice in 2015, and their impact on the HF signals characteristics in ionospheric oblique sounding. It was found that the negative phase of the magnetic storm led to a strong degradation of the ionospheric channel, ultimately causing a long blackout on paths adjacent to subauroral latitudes. On mid-latitude paths, the decrease in 1FMOF reached ~50% relative to the average values for the quiet ionosphere. It is shown that the propagation conditions via the sporadic Es layer during the magnetic storm on a subauroral path are substantially better than those for F-mode propagation via the upper ionosphere. The delay of the sharp decrease in 1FMOF during the main phase of the magnetic storm allowed us to determine the propagation velocity of the negative phase disturbances (~100 m/s) from subauroral to mid-latitude ionosphere along two paths: Lovozero – Yoshkar-Ola and Cyprus – Nizhny Novgorod. It is shown that both the LOF and the signal/noise ratio averaged over the frequency band corresponding to the propagation mode via the sporadic Es layer correlate well with the auroral AE index. Using an over-the-horizon chirp radar with a bistatic configuration on the Cyprus – Rostov-on-Don path, we located small-scale scattering irregularities responsible for abnormal signals in the region of the equatorial boundary of the auroral oval.  相似文献   

7.
It is well known that the ionosphere affects radio wave propagation especially in the high frequency (HF) range. HF radio waves reflected by the ionosphere can reach considerable distances, often with changes in amplitude, phase, and frequency. The ionosphere is a dispersive in frequency and time, bi-refractive, absorbing medium, in which multipath propagation due to traveling irregularities is very frequent. The traveling irregularities undulate the reflecting ionospheric layer, introducing variations in signal amplitude (fading). In this multipath time variant channel fading is mainly considered, even though it is not the sole effect. Echo signals from a single reflection, as in ionospheric vertical sounding (VIS) techniques, are affected by a certain degree of variability even in quiet ionospheric conditions. In this work the behavior of the ionospheric channel is studied and characterized by observing the power variation of received echoes using the VIS technique. Multipath fading was analyzed quantifying the power variation of the signal echo due to irregularities on a temporal scale from 0.5 to 256 s. An experimental set-up derived from an ionosonde was implemented and the analysis was performed employing a special numerical algorithm operating off-line on the acquired time sequence of the signal. The gain-loss of the irregularity shapes are determined in some special cases.  相似文献   

8.
Es层是存在于电离层中的电子密度非常高的偶发E层(Sporadic E),其电子密度可达常规E层的100倍.电离层Es能够反射原本穿透F层的VHF低频段(30~150MHz)无线电波,而且对HF高频段(10~30MHz)无线电波传播具有显著影响.运用垂测和斜测观测数据,研究HF频段Es层电波传播特征,得到了不同类型及不同高度Es层的衰减系数.根据f0Es的日变化规律,可得HF频段衰减系数的日变化规律,进而分析并得到Es层对短波传播的影响.不存在电离层Es时,通常无法通过电离层实现VHF超远距离通信.为了对VHF链路通过电离层Es的传播衰减进行定量分析,根据EBU多条链路的观测结果,拟合并建立了电离层Es衰减模型.将该模型、ITU模型和观测数据进行对比,发现本文建立的模型准确度更高.利用建立的模型,对电离层Es不同临频f0Es条件下接收信号场强和电压随传播距离的变化进行了计算,结果可为VHF链路设计及建立提供参考.   相似文献   

9.
This work studies the variations of HF characteristics and ionospheric parameters recorded over mid-latitude paths in the Russian East-Siberian region during magnetic storms on May 15, 1997, and September 24, 2006. The sharp wave-like changes in maximum observed frequencies (MOF) were recorded during the main phase of the investigated storms. Assuming that observed MOF variations can be produced by ionospheric disturbances propagating from the northern to the southern latitudes, a simulation of HF propagation conditions was carried out.  相似文献   

10.
In this paper, the complexity and nonlinear trends of Radio Refractivity Gradient (RRG) in the troposphere over selected locations in Nigeria are analyzed and discussed extensively. The RRG is an important parameter in estimating path clearance and propagation effects such as ducting, surface reflection and multi-path on terrestrial line of-sights links. Also, radio wave signal propagating in the troposphere is affected by unpredictability of a weather condition which includes the variations of meteorological parameters such as temperature, pressure and relative humidity. The complex state of the atmosphere, which is the medium for the transmission of radio signals tend to have very strong influence such as scintillation and ducting on the quality of the radio signal, amplitude and phase. Variations in the meteorological parameters also induce variations in the refractive index of the atmosphere which in-turn results in the effect known as radio refractivity. For effective prediction and modeling of radio signal propagation, one should be able to characterize the nature and predictability of the computed RRG information. Chaotic Quantifiers (CQ) such as Phase Plot Reconstruction (PPR), Average Mutual Information (AMI), False Nearest Neighbor (FNN), Recurrence Plot (RP) and Recurrence Quantification Analyses (RQA) are used to assess the RRG. The information reveal, however, is based on the prediction techniques, design and frequency planning of microwave networks which may be useful for optimum performances during atmospheric turbulence.  相似文献   

11.
A so-called “ISF” prediction method for geomagnetic disturbances caused by solar wind storms blowing to the Earth is suggested. The method is based on a combined approach of solar activity, interplanetary scintillation (I) and geomagnetic disturbance observations during the period 1966–1982 together with the dynamics of solar wind storm propagation (S) and fuzzy mathematics (F). It has been used for prediction tests for 37 geomagnetic disturbance events during the descending solar activity phase 1984–1985, and was presented in 33rd COSPAR conference. Here, it has been improved by consideration of the three dimensional propagation characteristics of each event, the search for the best radio source and the influence of the southward components of interplanetary magnetic fields on the geomagnetic disturbances. It is used for prediction tests for 24 larger geomagnetic disturbance events that produced space anomalies during the period 1980–1999. The main results are: (1) for the onset time of the geomagnetic disturbance, the relative error between the observation, Tobs, and the prediction, Tpred, ΔTpred/Tobs  10% for 45.8% of all events, 30% for 78.3% and >30% for only 21.7%; (2) for the magnetic disturbance magnitude, the relative error between the observation, ∑Kp,obs, and the prediction, ∑Kp,pred, Δ∑Kp,pred/∑Kp,obs  10% for 41.6% of all events, 30% for 79% and 45% for 100%. This shows that the prediction method described here has encouraging prospects for improving predictions of large geomagnetic disturbances in space weather events.  相似文献   

12.
A modification of the Doppler Interferometry Technique is suggested to enable estimating angles of arrival of comparatively broadband HF signals scattered by random irregularities of the ionospheric plasma with the use of small-size weakly directional antennas. The technique is based on the measurements of cross-spectra phases of the probe radiation recorded at least in three spatially separated points. The developed algorithm has been used to investigate the angular and frequency-time characteristics of HF signals propagating at frequencies above the maximum usable one (MUF) for the direct radio path Moscow-Kharkiv. The received signal spectra show presence of three families of spatial components attributed, respectively, to scattering by plasma irregularities near the middle point of the radio path, ground backscatter signals and scattering of the sounding signals by the intense plasma turbulence associated with auroral activations. It has been shown that the regions responsible for the formation of the third family components are located well inside the auroral oval. The drift velocity and direction of the auroral ionosphere plasma have been determined. The obtained estimates are consistent with the classical conception of the ionospheric plasma convection at high latitudes and do not contradict the results of investigations of the auroral ionosphere dynamics using the SuperDARN network.  相似文献   

13.
The occurrence of radio signal fading events caused by ionospheric absorption plays an important role in the performance of radio-communication systems. It is necessary to know the magnitude and time-scale of such events in order to specify technical parameters of the communication system to be used. Generally, fading events are associated with solar flares, which are characterized by sudden increase in the solar X-ray flux that causes an increase in the ionization in the lower ionosphere. The abrupt increase of ionization causes the absorption of radio waves propagating in the Earth–ionosphere wave-guide and is reported as radio signal fading events. A simple experiment to monitor the behavior of lower ionosphere has been carried out at the Southern Space Observatory-SSO/INPE (29.43°S, 53.8°W), located in southern Brazil. The experiment is basically a computer controlled radio receiver that records the received signal strength of Amplitude Modulated (AM) radio signals in the HF (High Frequencies) range. We analyzed data of the 6 MHz beacon signal that has been transmitted by a broadcasting radio station located about 400 km from the observation site. In this work we present initial results of daily variation of the received signal strength and fading events associated with solar flares observed in the 6 MHz signal monitored by the experiment during 2001. X-ray solar flux data from the GOES-8 satellite were used to identify X-ray solar bursts associated with solar flares. Based on the one-year data collected by the experiment, a statistical summary of fading occurrences and their correlation with solar flares, as well as the distributions of time-scales and magnitudes of such events are presented.  相似文献   

14.
The high-frequency (HF) emission in near-Earth space from various powerful transmitters (radio communications, radars, broadcasting, universal time and navigation stations, etc.) form an integral part of the modern world that it cannot do without. In particular, special-purpose research facilities equipped with powerful HF transmitters are used successfully for plasma experiments and local modification of the ionosphere. In this work, we are using the results of a complex space-ground experiment to show that exposure of the subauroral region to HF emission can not only cause local changes in the ionosphere, but can also trigger processes in the magnetosphere–ionosphere system that result in intensive substorm activity (precipitations of high-energy particles, aurorae, significant variations in the ionospheric parameters and, as a consequence, in radio propagation conditions).  相似文献   

15.
Observations of the direction of arrival and time of flight of HF signals propagating on a 1400 km path oriented along the mid-latitude trough are presented. At night, the signal commonly arrives from directions offset from the great circle bearing by up to 80° and these events have been categorised into five main types. Statistics indicating how often these categories of propagation were observed in the period August 2006 to September 2007 are presented. The physical mechanisms which result in the off great circle propagation are also discussed.  相似文献   

16.
Comparative analysis of GPS TEC data and FORMOSAT-3/COSMIC radio occultation measurements was carried out for Japan region during period of the extremely prolonged solar minimum of cycle 23/24. COSMIC data for different seasons corresponded to equinox and solstices of the years 2007–2009 were analyzed. All selected electron density profiles were integrated up to the height of 700 km (altitude of COSMIC satellites), the monthly median estimates of Ionospheric Electron Content (IEC) were retrieved with use of spherical harmonics expansion. Monthly medians of TEC values were calculated from diurnal variations of GPS TEC estimates during considered month. Joint analysis of GPS TEC and COSMIC data allows us to extract and estimate electron content corresponded to the ionosphere (its bottom and topside parts) and the plasmasphere (h > 700 km) for different seasons of 2007–2009. Percentage contribution of ECpl to GPS TEC indicates the clear dependence from the time and varies from a minimum of about 25–50% during day-time to the value of 50–75% at night-time. Contribution of both bottom-side and topside IEC has minimal values during winter season in compare with summer season (for both day- and night-time). On average bottom-side IEC contributes about 5–10% of GPS TEC during night and about 20–27% during day-time. Topside IEC contributes about 15–20% of GPS TEC during night and about 35–40% during day-time. The obtained results were compared with TEC, IEC and ECpl estimates retrieved by Standard Plasmasphere–Ionosphere Model that has the plasmasphere extension up to 20,000 km (GPS orbit).  相似文献   

17.
The results of 1–20 μm infrared photometry of seven 3CR radio galaxies are discussed. The broad line galaxies all show steep infrared spectra with a power law index α −2.4 (F ∝ ν) in direct continuation of the optical spectra. These spectra are far steeper than those observed in Seyfert 1 galaxies, the radio quiet counterparts of broad line radio galaxies. No infrared excesses were observed in narrow line radio galaxies. However, more sensitive observations are needed before any resemblance in the infrared between narrow line radio galaxies and Seyfert 2 galaxies can be excluded.  相似文献   

18.
The purpose of the present paper is to describe the observations of the variations in the parameters of HF radio waves propagating through the ionosphere when the action of the super typhoon Hagibis on 6–13 October 2019 occurred. The observations have been made with the Harbin Engineering University (the People's Republic of China) multi-frequency multiple path radio system involving the software-defined technology. The action of the super typhoon has been shown to be accompanied by enhanced atmospheric wave activity acting to generate wave processes with periods of 10 to 120 min. Coupling in the atmosphere–upper-atmosphere–ionosphere system has been confirmed to be carried out with atmospheric gravity waves. The ionosphere underwent the greatest impact on those days when the supertyphoon had maximum energy, on 8, 10, and especially 9 October 2019, and when it was found to be in an ~2,500–3,000-km distance range from the propagation path midpoints. Under the action of wave processes, the height of the reflection region was observed to oscillate within the ±(30–90 km) limits. The amplitude of the quasi-periodic variations in the ionospheric F-region electron density was estimated to be 10–12% for periods of ~20 min, and 30–60% for periods of ~60–120 min. The joint action of the dusk terminator and the supertyphoon has been confirmed to enhance wave activity in the ionosphere. Similar effects for the dawn terminator have not been detected.  相似文献   

19.
Data on day-time and night-time radio wave absorption in the frequency range 50 to 2614 kHz, obtained in long-term observational programmes in Central Europe, are compared with corresponding absorption values calculated from electron density profiles of the International Reference Ionosphere (IRI-1979) using the full-wave method.Discrepancies between calculated and observed absorption values were found for the diurnal and the solar-cycle variation, the amplitudes of the solar-cycle variation of absorption being considerably larger than the observed variation.A modification of the solar-activity dependence of the D-region electron density parameters is derived, which provides an improvement of the solar-cycle variation as well as the diurnal variation of the IRI electron density profiles.  相似文献   

20.
对于目前无TOC时刻的长河二号导航信号 ,提出如何自定义准TOC时刻、计算TOC历表 ,测定准TOC时刻导航信号参考脉冲与UTC整秒间的时刻差 ;以便在GPS技术测量长河二号地波传播时延、推求大地电导率的实验研究中应用。其思路和方法可供长波定时用户利用长河二号导航信号进行“长河二号与BPL”或“长河二号与GPS”组合定时应用参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号