首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Complex electrodynamic processes over the low latitude region often result in post sunset plasma density irregularities which degrade satellite communication and navigation. In order to forecast the density irregularities, their occurrence time, duration and location need to be quantified. Data from the Communication/Navigation Outage Forecasting System (C/NOFS) satellite was used to characterize the low latitude ion density irregularities from 2011 to 2013. This was supported by ground based data from the SCIntillation Network Decision Aid (SCINDA) receivers at Makerere (Geographic coordinate 32.6°E, 0.3°N, and dip latitude ?9.3°N) and Nairobi (Geographic coordinate 36.8°E, ?1.3°N, and dip latitude ?10.8°N). The results show that irregularities in ion density have a daily pattern with peaks from 20:00 to 24:00 Local Time (LT). Scintillation activity at L band and VHF over East Africa peaked in 2011 and 2012 from 20:00 to 24:00 LT, though in many cases scintillation at VHF persisted longer than that at L band. A longitudinal pattern in ion density irregularity occurrence was observed with peaks over 135–180°E and 270–300°E. The likelihood of ion density irregularity occurrence decreased with increasing altitude. Analysis of C/NOFS zonal ion drift velocities showed that the largest nighttime and daytime drifts were in 270–300°E and 300–330°E longitude regions respectively. Zonal irregularity drift velocities over East Africa were for the first time estimated from L-band scintillation indices. The results show that the velocity of plasma density irregularities in 2011 and 2012 varied daily, and hourly in the range of 50–150 m s?1. The zonal drift velocity estimates from the L-band scintillation indices had good positive correlation with the zonal drift velocities derived from VHF receivers by the spaced receiver technique.  相似文献   

2.
Post-sunset ionospheric irregularities are common features of the equatorial ionosphere that affect radio communication and navigation systems; their triggering physical mechanism is not yet fully understood. Atmospheric gravity wave is considered as a seeding mechanism for the occurrence of ionospheric irregularities (Abdu et al., 2009). To understand the effects of atmospheric waves, characteristics of wavelike oscillation from ionospheric total electron content (TEC) fluctuation that can be obtained from superposition of different oscillation modes have been investigated. Decomposing fluctuating TEC into different oscillation modes and investigating oscillation characteristics of each component is also important to get insight about the characteristics of individual atmospheric waves that may cause TEC fluctuation. In this paper we have investigated characteristics of components of fluctuating TEC obtained from SCINDA GPS receiver installed at Bahir Dar, (geographic coordinate, 11.5°N, 37.6° E, and dip latitude of 2.5°N) Ethiopia during April 2012. First Empirical Mode Decomposition (EMD) has been applied to decompose TEC fluctuation into different oscillation modes that are known as Intrinsic Mode Function (IMF). Hilbert-Huang Transform (HHT) and Continuous Wavelet Transform (CWT) have been applied to investigate the characteristics of wave-like oscillations. Applying EMD on fluctuating vTEC corresponding to a GPS satellite, five components are found. Results from HHT and CWT have shown excellent agreement. In addition, it is found out that the median periods of oscillation of those five components are 9, 17, 47, 78, and 118 min. Of these periods, 17 and 47 min respectively are oscillation periods of components of TEC fluctuation with occurrence frequency of 92% and 91% that may be interpreted as the manifestation of two frequently occurring components of atmospheric gravity waves that are likely generated by the motion of solar terminator.  相似文献   

3.
利用海南台站(19.5°N,109.1°E,dip:13.6°N)和磁赤道区的多种地基和天基观测数据,对2011年11月20日观测到的电离层不规则体事件进行了分析.海南台站VHF雷达、电离层闪烁和数字测高仪的综合观测结果表明,当天日落附近发生了强的电离层不规则体事件,主要表现为雷达羽和强闪烁的形态.结合磁赤道区GPS和C/NOFS卫星观测结果进行分析可知,海南台站日落附近出现的雷达羽和强闪烁与南海磁赤道区产生的主等离子体泡存在明显联系.   相似文献   

4.
The present paper reports coordinated ionospheric irregularity measurements at optical as well as GPS wavelengths. Optical measurements were obtained from Tiny Ionospheric Photometer (TIP) sensors installed onboard the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) satellites. GPS radio signals were obtained from a dual frequency GPS receiver operational at Calcutta (22.58°N, 88.38°E geographic; geomagnetic dip: 32.96°; 13.00°N, 161.63°E geomagnetic) under the SCIntillation Network Decision Aid (SCINDA) program. Calcutta is located near the northern crest of Equatorial Ionization Anomaly (EIA) in the Indian longitude sector. The observations were conducted during the unusually low and prolonged solar minima period of 2008–2010. During this period, four cases of post-sunset GPS scintillation were observed from Calcutta. Among those cases, simultaneous fluctuations in GPS Carrier-to-Noise ratios (C/No) and measured radiances from TIP over a common ionospheric volume were observed only on February 2, 2008 and September 25, 2008. Fluctuations observed in measured radiances (maximum 0.95 Rayleigh) from TIP due to ionospheric irregularities were found to correspond well with C/N0 fluctuations on the GPS links observed from Calcutta, such effects being noted even during late evening hours of 21:00–22:00 LT from locations around 40° magnetic dip. These measurements indicate the existence of electron density irregularities of scale sizes varying over several decades from 135.6 nm to 300–400 m well beyond the northern crest of the EIA in the Indian longitude sector during late evening hours even in the unusually low solar activity conditions.  相似文献   

5.
The Chinese Meridian Project is a ground-based space environment monitoring network, which is constructed in two steps. The first step (Phase I) of the project consists of 15 observation stations located roughly along 120°E longitude and 30°N latitude. The second step (Phase II) of the project will additionally deploy 16 stations to better cover China's territory, and build a stereo monitoring capability to monitor the cause and effect of the space weather chain in the solar terrestrial system. Based on the existing two monitoring chains in Phase I, two more chains will be established along 100°E longitude and 40°N latitude, respectively, forming a double-cross network configuration. After the two-step construction, the whole project will run nearly 300 instruments deployed at 31 stations. Aside from standard instruments, quite a few innovative and powerful instruments will be developed, such as radioheliographs with a very wide frequency band, a 3-station incoherent scattering radar to make a 3D measurement of the ionosphere, and a helium lidar to measure atmosphere density up to an altitude of 1000 km.   相似文献   

6.
利用海南台站和东南亚地区的多种地基和天基观测手段,对2014年7月28日夜间观测到的东亚低纬F区不规则体事件的时空变化及其物理过程进行分析。结果表明,海南台站观测到了罕见的长时间持续的F区电离层不规则体,不同手段观测到的电离层不规则体存在明显的形态差异。不同台站观测到的电离层不规则体活动存在明显的差异。海南台站经度区南北异常峰附近的TEC起伏活动在日落后至午夜附近明显增强,在午夜后明显减弱。C/NOFS卫星轨迹午夜后逐渐接近于磁赤道,且处于较低高度上,几乎总会观测到弱等离子体扰动/泡的发生,与该区域地基观测的弱电离层不规则体活动存在明显的联系。SWARM卫星在黎明海南台站附近经度区仍观测到较强的赤道异常双峰结构,且西侧异常峰区附近仍存在明显的等离子体密度耗空/泡结构。海南台站西侧磁赤道区附近(中南半岛)强对流活动(MCC)激发的重力波种子扰动对东亚低纬区等离子体泡及准周期结构的产生发挥了重要作用。   相似文献   

7.
In this paper we consider an idea of the troposphere tide influence on the character of the longitudinal variations in the distribution of the equatorial plasma bubbles (EPBs) observed in the topside ionosphere. For this purpose, the obtained EPB longitudinal patterns were compared with the thermosphere and ionosphere characteristics having the prominent “wave-like” longitudinal structures with wave number 4, which are uniquely associated with the influence of the troposphere DE3 tides. The characteristics of the equatorial mass density anomaly (EMA), equatorial ionization anomaly (EIA), zonal wind and pre-reversal E?×?B drift enhancement (PRE) were used for comparison. The equinox seasons during high solar activity were under consideration. It was obtained that the longitudinal patterns of the EMA and zonal wind show the surprising similarity with the EPB distributions (R???0.8, R???0.72). On the other hand, the resemblance with the ionosphere characteristics (EIA, PRE) is rather faint (R???0.37, R???0.12). It was shown that the thermosphere zonal winds are the most possible transfer mediator of the troposphere DE3 tide influence. The most successful moment for the transfer of the troposphere DE3 tide energy takes place in the beginning of the EPB production, namely, during the seed perturbation development.  相似文献   

8.
A centaure rocket, with payloads of Langmuir probe and Electric field probe, was launched from Thumba (8° 31'N, O° 47'S dip), India on February 12, 1981 at 1057 Hrs IST. The aim of the experiment was to study the role of localised electric fields in the generation of plasma density irregularities through cross field instability and the two-stream instability mechanism. The rocket was launched at a time when Type I irregularities were observed with VHF radar at Thumba.  相似文献   

9.
An upgrade of Wuhan Ionospheric Backscattering Sounding System (WIOBSS) was developed in 2015. Based on the Universal Serial Bus (USB), and a high performance FPGA, the newly designed WIOBSS has a completely digital structure, which makes it portable and flexible. Two identical WIOBSSs, which were situated at Mile (24.31°N, 103.39°E) and Puer (22.74°N, 101.05°E) respectively, were used to investigate the ionospheric irregularities. The comparisons of group distance, Doppler shift and width between Mile-Puer and Puer-Mile VHF ionospheric propagation paths indicate that the reciprocity of the irregularities is satisfied at midlatitude region. The WIOBSS is robust in the detection of ionospheric irregularities.  相似文献   

10.
This investigation uses simultaneous observations from all-sky imager system and an ionosonde collocated at Araguatins (5.65° S, 48.07° W and dip-latitude of 4.17° S), a near-equatorial region in Brazil. These simultaneous observations were used to investigate the occurrence of plasma bubbles and blobs in the field of the imaging system and their association with atypical range Spread-F signature in ionograms. Also, in-situ observation of plasma density from Swarm satellites were used to support the ground-based observations. Using a few cases, a methodology will be established to identify in the plasma blobs (atypical ESF) in the ionograms when there is the simultaneous observation of plasma bubbles and blobs in the field of view of the ionosonde. For this purpose, simultaneous sequence of OI 630.0 nm nightglow images and ionograms are presented for different case studies; 1. when there is the absence of a plasma bubble or blob, 2. when there is only the occurrence of plasma bubbles and 3. when there is the occurrence of plasma bubbles and blobs, in order to compare traces in the ionogram in all these case studies. With these we can cover all kinds of signatures in the ionograms corresponding to no irregularities, plasma bubbles only and plasma bubbles-blobs. These OI 630.0 nm nightglow and ionograms recorded simultaneously make it possible to establish a novel methodology to recognize in ionograms cases when there is the occurrence of Spread-F signature associated with bubble-blob in the FOV of the ionosonde.  相似文献   

11.
GNSS TEC values have been obtained from 18 stations distributed from the magnetic equator to nearly 80°N magnetic dip in the African and west-European longitude sector corresponding to the March 17–18, 2015 geomagnetic storm. Significantly depleted ionosphere have been observed at stations north of 50°N geographic on March 18, 2015 following the above storm over a longitude swath 11.9°–21°E covering the Eastern Africa and Western European longitude sector. High ROTI values were noted on March 17th at locations around 80°N magnetic dip. Two prominent peaks in PCN were noted around 09:00 UT and 14:00 UT on March 17, 2015 and around 15:00 UT on March 18, 2015. Daytime thermospheric (O/N2) ratio was markedly less on March 18th at latitudes above 60°N geographic which is suggested to be the major driver behind depleted high latitude ionosphere during the recovery phase of the storm on March 18, 2015.  相似文献   

12.
The Chinese Meridian Space Weather Monitoring Project (Meridian Project) is a ground-based geospace monitoring chain in China. It consists of 15 ground-based observation stations located roughly along 120°E longitude and 30°N latitude. In recent two years, using data from the Meridian Project, significant progress has been made in space weather and space physics research. These advances are mainly in four aspects:regional characteristics of space environment above China or along 120°E meridian line, coupling between space spheres at different heights and different physical processes, space weather disturbance and its propagation along the meridian chain, and space weather effects on ground technical facilities.   相似文献   

13.
Ionospheric perturbations in possible association with a major earthquake (EQ) (M?=?8.5) which occurred in India-Oceania region are investigated by monitoring subionospheric propagation of VLF signals transmitted from the NWC transmitter (F?=?19.8?kHz), Australia to a receiving station at Varanasi (geographic lat. 25.3°N, long 82.99°E), India. The EQ occurred on 11 April 2012 at 08:38:35?h UT (magnitude?≈?8.5, depth?=?10?km, and lat.?=?2.3°N, long.?=?93.0°E). A significant increase of few days before the EQ has been observed by using the VLF nighttime amplitude fluctuation method (fixed frequency transmitter signal). The analysis of total electron contents (TEC) derived from the global positioning system (GPS) at three different stations namely, Hyderabad (latitude 17.38°N, longitude 78.48°E), Singapore (latitude 1.37°N, longitude 103.84°E) and Port Blair (latitude 11.62°N, longitude 92.72°E) due to this EQ has also been presented. Significant perturbation in TEC data (enhancements and depletion) is noted before and after the main shock of the EQ. The possible mechanisms behind these perturbations due to EQ have also been discussed.  相似文献   

14.
This study presents an analysis of the observed north-south asymmetry of the range spread F (RSF) intensity at the low latitude region during an equinoctial month of different solar epochs (2002, 2015 and 2017). The ionospheric parameters were obtained during geomagnetic quiet days from four digisonde stations located along the Brazilian longitude, which include a dip equator station (Sao Luiz (SL: 2.33 S, 44.2 W)), conjugate stations (Campo Grande (CG: 20.5°S, 55°W) and Boa Vista (BV: 2.8°N, 60.7°W)) and another low latitude station (Cachoeira Paulista (CP: 22.7°S, 45°W)). The results highlight the competing effect of the post-sunset electric field strength and the trans-equatorial wind on the latitudinal distribution of the irregularity intensity at both hemispheres under varying background ionospheric condition. The RSF intensity was seen to reduce as the solar flux index decreased and the latitudinal peak shifted closer to the dip equator. This was dependent on the variation of the field line mapped irregularity spectrum and the density gradient. Likewise, the north-south asymmetry in the irregularity occurrence was seen to become more significant as a denser ionosphere was observed at the hemisphere with the equatorward meridional wind. This has further proven that the non-linear cascading of the plasma irregularity across the low latitude region is strongly influenced by the local electric field.  相似文献   

15.
This paper investigated the performance of the latest International Reference Ionosphere model (IRI-2016) over that of IRI-2012 in predicting total electron content (TEC) at three different stations in the Indian region. The data used were Global Positioning System (GPS) data collected during the ascending phase of solar cycle 24 over three low-latitude stations in India namely; Bangalore (13.02°N Geographic latitude, 77.57°E Geographic longitude), Hyderabad (17.25°N Geographic latitude, 78.30°E Geographic longitude) and Surat (21.16°N Geographic latitude, 72.78°E Geographic longitude). Monthly, the seasonal and annual variability of GPS-TEC have been compared with those derived from International Reference Ionosphere IRI-2016 and IRI-2012 with two different options of topside electron density: NeQuick and IRI01-corr. It is observed that both versions of IRI (i.e., IRI-2012 and IRI-2016) predict the GPS-TEC with some deviations, the latest version of IRI (IRI-2016) predicted the TEC similar to those predicted by IRI-2012 for all the seasons at all stations except for morning hours (0500 LT to 1000?LT). This shows that the effect of the updated version is seen only during morning hours and also that there is no change in TEC values by IRI-2016 from those predicted by IRI-2012 for the rest of the time of the day in the Indian low latitude region. The semiannual variations in the daytime maximum values of TEC are clearly observed from both GPS and model-derived TEC values with two peaks around March-April and September-October months of each year. Further, the Correlation of TEC derived by IRI-2016 and IRI-2012 with EUV and F10.7 shows similar results. This shows that the solar input to the IRI-2016 is similar to IRI 2012. There is no significant difference observed in TEC, bottom-side thickness (B0) and shape (B1) parameter predictions by both the versions of the IRI model. However, a clear improvement is visible in hmF2 and NmF2 predictions by IRI-2016 to that by IRI-2012. The SHU-2015 option of the IRI-2016 gives a better prediction of NmF2 for all the months at low latitude station Ahmedabad compare to AMTB 2013.  相似文献   

16.
Herein, we report on the ionospheric responses to a total solar eclipse that occurred on 21 August 2017 over the US region. Ground-based GPS total electron content (TEC) data along with ground-based measurements (Millstone Hill Observatory (MHO) and digital ionosondes) and space-based measurements (COSMIC radio occultation (RO) technique) allowed us to identify eclipse-associated ionospheric responses. TEC data at ~20°, ~30°, and ~40°N latitudes from the west to east longitudes show not only considerable depression but also wave-like characteristics in TEC both in the path of totality and away from it, exclusively on the day of eclipse. Interestingly, the observed depressions are associated with lesser (higher) magnitudes at stations over which the solar obscuration percentage was meager (significant), a clear indication of bow-wave-like features. The MHO observes a 30% reduction in F2-layer electron densities between 180 and 220 km on eclipse day. Ionosonde-scaled parameters over Boulder (40.4°N, 100°E) and Austin (30.4°N, 94.4°E) show a significant decrease in critical frequencies while an altitude elevation is seen in the virtual heights of the F-layer only during the eclipse day and that decreases are associated with wave-like signatures, which could be attributed to eclipse-generated waves. The estimated vertical electron density profile from the COSMIC RO-based technique shows a maximum depletion of 40%. Relatively intense and moderate depths of TEC depression, considerable reductions in the F2-layer electron densities measured by the MHO and COSMIC RO-measured densities at the F2-layer peak, and elevations in virtual heights and reduction in the critical frequencies measured by ionosondes during the eclipse day could be due to the eclipse-induced dynamical effects such as gravity waves (GWs) and their associated electro-dynamical effects (modification of ionospheric electric fields due to GWs).  相似文献   

17.
The spread-F echo of ionograms and scintillation of satellite signal propagation along the Earth-space path are two typical phenomena induced by ionospheric irregularities. In this study, we obtained spread-F data from HF (high frequency) digital ionosonde and scintillation index (S4) data from L-band and UHF receivers at low- and mid-latitudes in China during the 24th solar cycle. These four sites were located at Haikou (HK) (20°N, 110.34°E), Kunming (KM) (25.64°N, 103.72°E), Qingdao (QD) (36.24°N, 120.42°E), and Manzhouli (MZL) (49.56°N, 117.52°E). We used these data to investigate spread-F and scintillation occurrence percentages and variations with local time, season, latitude and solar activity. A comparative study of spread-F and scintillation occurrence rates has been made. The main conclusions are as follows: (a) FSF occurred mostly during post-midnight, while RSF and scintillation appeared mainly during pre-midnight at HK and KM; (b) FSF occurrence rates were larger at QD and MZL than expected; (c) the FSF occurrence percentages were anti-correlated with solar activity at HK and KM; meanwhile RSF and scintillation occurrence rates increased with the increase of solar activity at this two sites; (d) the highest FSF occurrence rates mostly appeared during the summer months, while RSF and scintillation occurred mostly in the equinoctial months at HK and KM; (e) the scintillation occurrence was usually associated with the appearance of RSF, probably due to a different physical mechanism comparing with FSF. Some of these results verified the conclusions of previous papers, whereas some show slight difference. These results are important in understanding ionospheric irregularities variations characteristic at low- and mid-latitudes in China.  相似文献   

18.
2017年9月8日发生了一次强磁暴,Kp指数最大值达到8.利用区域电离层格网模型(Regional Ionosphere Map,RIM)和区域ROTI(Rate of TEC Index)地图,分析了磁暴期间中国及其周边地区电离层TEC扰动特征和低纬地区电离层不规则体的产生与发展情况,同时利用不同纬度IGS(International GNSS Service)测站BJFS(39.6°N,115.9°E),JFNG(30.5°N,114.5°E)和HKWS(22.4°N,114.3°E)的GPS双频观测值,获取各测站的ROTI和DROT(Standard Deviation of Differential ROT)指数变化趋势.结果表明:此次磁暴发生期间电离层扰动先以正相扰动为主,主要发生在中低纬区域,dTEC(differential TEC)最大值达到14.9TECU,随后电离层正相扰动逐渐衰减,在低纬区域发生电离层负相扰动,dTEC最小值达到-7.2TECU;在12:30UT-13:30UT时段,中国南部低纬地区发生明显的电离层不规则体事件;相比BJFS和JFNG两个测站,位于低纬的HKWS测站的ROTI和DROT指数变化更为剧烈,这表明电离层不规则体结构存在纬度差异.   相似文献   

19.
电离层等离子体不规则结构通常会影响星地卫星的通信、导航及定位等,因此研究不规则体的结构特征和演化过程具有非常重要的科学意义和应用价值。中尺度电离层行进式扰动(MSTID)是一种常发于F层的电离层扰动,其演化过程十分复杂。本文利用伊春和兴隆台站全天空气辉成像仪、Swarm卫星、佳木斯高频雷达以及漠河和十三陵台站数字测高仪观测数据,对2018年10月17日夜间出现在中国东北区域上空的MSTID事件进行分析。该MSTID事件传播时间较长,在气辉观测中持续时间超过4 h(12:02-16:23 UT),其波长范围为176.3~322.5 km,波速范围为67.0~154.1 m·s–1。研究结果显示,该MSTID可能产生于较高的纬度,自东北向西南往中纬传播,依次经过伊春和兴隆台站的气辉观测区域。   相似文献   

20.
汪领  尹凡 《空间科学学报》2020,40(6):1014-1023
利用Swarm卫星2015年1月1日至2019年12月31日的50Hz高频磁场数据,根据阈值判断垂直于主磁场方向的扰动,对磁纬45°N-45°S之间的小尺度电离层行扰事件进行探测.为避免混淆而产生的干扰,可以根据阈值判断平行于主磁场方向是否发生扰动,从而排除典型的赤道等离子体泡事件.但对于较弱的赤道等离子体泡事件,扰动阈值判断无效.为避免弱赤道等离子体泡事件的污染,根据小尺度电离层行扰事件和赤道等离子体泡事件在不同参数空间中的密度分布差异,利用基于密度的聚类算法将赤道等离子体泡事件进一步甄别提取.结果表明,聚类算法能够有效地将赤道等离子体泡事件从小尺度电离层行扰事件中甄选出来,并使小尺度电离层行扰事件聚类与赤道等离子体泡事件聚类形成清晰的边界.由聚类算法导出的弱赤道等离子体泡事件主要分布在磁纬15°N-15°S,地理经度20°-60°W,月份10至3月之间,并且在20:00MLT-24:00MLT存在高发生率,同时依赖于太阳活动,这也验证了前人的相关研究结果.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号