首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work presents, for the first time, the analysis of the occurrence of ionospheric irregularities during geomagnetic storms at Tucumán, Argentina, a low latitude station in the Southern American longitudinal sector (26.9°S, 294.6°E; magnetic latitude 15.5°S) near the southern crest of the equatorial ionization anomaly (EIA). Three geomagnetic storms occurred on May 27, 2017 (a month of low occurrence rates of spread-F), October 12, 2016 (a month of transition from low to high occurrence rates of spread-F) and November 7, 2017 (a month of high occurrence rates of spread-F) are analyzed using Global Positioning System (GPS) receivers and ionosondes. The rate of change of total electron content (TEC) Index (ROTI), GPS Ionospheric L-band scintillation, the virtual height of the F-layer bottom side (h'F) and the critical frequency of the F2 layer (foF2) are considered. Furthermore, each ionogram is manually examined for the presence of spread-F signatures.The results show that, for the three events studied, geomagnetic activity creates favorable conditions for the initiation of ionospheric irregularities, manifested by ionogram spread-F and TEC fluctuation. Post-midnight irregularities may have occurred due to the presence of eastward disturbance dynamo electric fields (DDEF). For the May storm, an eastward over-shielding prompt penetration electric field, (PPEF) is also acting. A possibility is that the PPEF is added to the DDEF and produces the uplifting of the F region that helps trigger the irregularities. Finally, during October and November, strong GPS L band scintillation is observed associated with strong range spread-F (SSF), that is, irregularities extending from the bottom-side to the topside of the F region.  相似文献   

2.
The characteristics of nighttime ionospheric scintillations measured at the L-band frequency of 1.575 GHz over Dibrugarh (27.5°N, 95°E, MLAT  17°N, 43° dip) during the ascending half of the solar cycle 24 from 2010 to 2014 have been investigated and the results are presented in this paper. The measurement location is within or outside the zone of influence of the equatorial ionization anomaly depending on solar and geomagnetic activity. Maximum scintillation is observed in the equinoxes irrespective of solar activity with clear asymmetry between March and September. The occurrence frequency in the solstices shifts from minimum in the June solstice in low solar activity to a minimum in the December solstice in high solar activity years. A significant positive correlation of occurrence of scintillations in the June solstice with solar activity has been observed. However, earlier reports from the Indian zone (~75°E) indicate negative or no correlation of scintillation in June solstice with solar activity. Scintillations activity/occurrence in solstices indicates a clear positive correlation with Es recorded simultaneously by a collocated Ionosonde. In equinoxes, maximum scintillations occur in the pre-midnight hours while in solstices the occurrence frequency peaks just after sunset. The incidence of strong scintillations (S4  0.4) increases with increase in solar activity. Strong (S4  0.4) ionospheric scintillations accompanied by TEC depletions in the pre-midnight period is attributed to equatorial irregularities whereas the dusk period scintillations are related to the sporadic-E activity. Present results thus indicate that the current location at the northern edge of the EIA behaves as low as well as mid-latitude location.  相似文献   

3.
The present paper reports coordinated ionospheric irregularity measurements at optical as well as GPS wavelengths. Optical measurements were obtained from Tiny Ionospheric Photometer (TIP) sensors installed onboard the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) satellites. GPS radio signals were obtained from a dual frequency GPS receiver operational at Calcutta (22.58°N, 88.38°E geographic; geomagnetic dip: 32.96°; 13.00°N, 161.63°E geomagnetic) under the SCIntillation Network Decision Aid (SCINDA) program. Calcutta is located near the northern crest of Equatorial Ionization Anomaly (EIA) in the Indian longitude sector. The observations were conducted during the unusually low and prolonged solar minima period of 2008–2010. During this period, four cases of post-sunset GPS scintillation were observed from Calcutta. Among those cases, simultaneous fluctuations in GPS Carrier-to-Noise ratios (C/No) and measured radiances from TIP over a common ionospheric volume were observed only on February 2, 2008 and September 25, 2008. Fluctuations observed in measured radiances (maximum 0.95 Rayleigh) from TIP due to ionospheric irregularities were found to correspond well with C/N0 fluctuations on the GPS links observed from Calcutta, such effects being noted even during late evening hours of 21:00–22:00 LT from locations around 40° magnetic dip. These measurements indicate the existence of electron density irregularities of scale sizes varying over several decades from 135.6 nm to 300–400 m well beyond the northern crest of the EIA in the Indian longitude sector during late evening hours even in the unusually low solar activity conditions.  相似文献   

4.
Complex electrodynamic processes over the low latitude region often result in post sunset plasma density irregularities which degrade satellite communication and navigation. In order to forecast the density irregularities, their occurrence time, duration and location need to be quantified. Data from the Communication/Navigation Outage Forecasting System (C/NOFS) satellite was used to characterize the low latitude ion density irregularities from 2011 to 2013. This was supported by ground based data from the SCIntillation Network Decision Aid (SCINDA) receivers at Makerere (Geographic coordinate 32.6°E, 0.3°N, and dip latitude ?9.3°N) and Nairobi (Geographic coordinate 36.8°E, ?1.3°N, and dip latitude ?10.8°N). The results show that irregularities in ion density have a daily pattern with peaks from 20:00 to 24:00 Local Time (LT). Scintillation activity at L band and VHF over East Africa peaked in 2011 and 2012 from 20:00 to 24:00 LT, though in many cases scintillation at VHF persisted longer than that at L band. A longitudinal pattern in ion density irregularity occurrence was observed with peaks over 135–180°E and 270–300°E. The likelihood of ion density irregularity occurrence decreased with increasing altitude. Analysis of C/NOFS zonal ion drift velocities showed that the largest nighttime and daytime drifts were in 270–300°E and 300–330°E longitude regions respectively. Zonal irregularity drift velocities over East Africa were for the first time estimated from L-band scintillation indices. The results show that the velocity of plasma density irregularities in 2011 and 2012 varied daily, and hourly in the range of 50–150 m s?1. The zonal drift velocity estimates from the L-band scintillation indices had good positive correlation with the zonal drift velocities derived from VHF receivers by the spaced receiver technique.  相似文献   

5.
北驼峰区电离层GPS卫星闪烁事件时空特征及对通信的影响   总被引:1,自引:1,他引:0  
基于子午工程北大深圳站(22.59°N,113.97°E)电离层GPS双频接收机在2011年1月1日至2017年12月31日连续7年的长时间序列闪烁和TEC观测数据,分析不同太阳活条件下华南赤道异常北驼峰区观测到的GPS卫星L波段电离层闪烁事件时空分布特征及其对通信的影响.结果表明:GPS闪烁事件几乎都发生在夜间,且主要发生在春秋分月份;在不同太阳活动条件下,夜间GPS闪烁事件都主要发生在北驼峰区域靠近磁赤道的一侧,且GPS闪烁事件存在明显的东-西侧天区不对称性,即在台站西侧天区发生的闪烁事件明显偏多;在不同太阳活动条件下,弱闪烁事件伴随的TEC耗尽和卫星失锁事件比例相对较低,强闪烁事件则大部分都伴随着TEC耗尽和卫星失锁事件的发生.   相似文献   

6.
An upgrade of Wuhan Ionospheric Backscattering Sounding System (WIOBSS) was developed in 2015. Based on the Universal Serial Bus (USB), and a high performance FPGA, the newly designed WIOBSS has a completely digital structure, which makes it portable and flexible. Two identical WIOBSSs, which were situated at Mile (24.31°N, 103.39°E) and Puer (22.74°N, 101.05°E) respectively, were used to investigate the ionospheric irregularities. The comparisons of group distance, Doppler shift and width between Mile-Puer and Puer-Mile VHF ionospheric propagation paths indicate that the reciprocity of the irregularities is satisfied at midlatitude region. The WIOBSS is robust in the detection of ionospheric irregularities.  相似文献   

7.
同步卫星讯号显示的电离层闪烁特性   总被引:1,自引:1,他引:0       下载免费PDF全文
本文利用1983年5—8月,1984年5—12月在武昌(114.4°E,30.6°N)对日本ETS-Ⅱ卫星(130.0°E)发出的136.1124MHz讯号的观测资料进行了统计分析。结果表明:(1)武昌电离层闪烁不但有日变化,而且有季变化。每年5—7月为闪烁最大活动期,在这些月份的夜间常出现法拉弟旋转角类波扰动伴随有强闪烁现象。武昌电离层闪烁是属于中纬闪烁型;(2)闪烁指数与法拉弟旋转角起伏密切相关,它们出现率之间的相关系数为0.8以上;夜间闪烁与扩展F层,白天闪烁与突发E层出现率之间的相关系数分别为0.6和0.55。   相似文献   

8.
Understanding the local generation rate of equatorial spread-F (ESF) is important for forecasting ionospheric scintillation. Using the GPS ionospheric scintillation/TEC and VHF radar data during March-April and September-October from 2010 to 2014, the occurrence of ionospheric scintillation, TEC fast fluctuation, and backscatter plume were studied. Through analyzing the simultaneous occurrence of ionospheric scintillation, TEC fast fluctuation and backscatter plume, the local generation rate of ESF over Sanya was investigated. The results show that the monthly generation rate varies between 0% and 68%. A significant equinoctial asymmetry of local generation rate of ESF can be found in 2010, 2013 and 2014. The local generation rate of ESF increases from 2010 to 2014 during March-April, while it does not have similar trend during September-October. The plasma vertical drift influenced by solar activity has a significant impact on the monthly generation rate. The equinoctial asymmetry of plasma vertical drift may contribute a lot to the equinoctial asymmetry of the generation rate of ESF.  相似文献   

9.
This study presents an analysis of the observed north-south asymmetry of the range spread F (RSF) intensity at the low latitude region during an equinoctial month of different solar epochs (2002, 2015 and 2017). The ionospheric parameters were obtained during geomagnetic quiet days from four digisonde stations located along the Brazilian longitude, which include a dip equator station (Sao Luiz (SL: 2.33 S, 44.2 W)), conjugate stations (Campo Grande (CG: 20.5°S, 55°W) and Boa Vista (BV: 2.8°N, 60.7°W)) and another low latitude station (Cachoeira Paulista (CP: 22.7°S, 45°W)). The results highlight the competing effect of the post-sunset electric field strength and the trans-equatorial wind on the latitudinal distribution of the irregularity intensity at both hemispheres under varying background ionospheric condition. The RSF intensity was seen to reduce as the solar flux index decreased and the latitudinal peak shifted closer to the dip equator. This was dependent on the variation of the field line mapped irregularity spectrum and the density gradient. Likewise, the north-south asymmetry in the irregularity occurrence was seen to become more significant as a denser ionosphere was observed at the hemisphere with the equatorward meridional wind. This has further proven that the non-linear cascading of the plasma irregularity across the low latitude region is strongly influenced by the local electric field.  相似文献   

10.
利用2002年2月至2007年12月(第23太阳活动周的下降段)近6年的海南DPS-4型电离层测高仪探测数据, 对磁扰和磁静夜晚期间扩展F起始时间出现率进行统计研究. 结合海南电离层观测站所观测到的扩展F类型, 将扩展F区分为频率型、区域型、混合型和强区域型, 分别进行统计分析. 结果表明, 无论磁扰还是磁静夜晚, 混合型扩展F起始时间总出现率最高, 最为活跃, 其次为频率型和强区域型扩展F, 最不活跃的是区域型扩展F; 无论在磁扰还是在磁静夜晚条件下, 混合扩展F起始时间主要围绕在午夜前后, 且磁静时更多地起始于午夜前, 而磁扰时则倾向于延至午夜后, 频率型扩展F在午夜后较高, 而强区域型扩展F则在午夜前较高. 在本次太阳活动下降阶段, 强区域型与区域型扩展F的起始时间出现率逐年与太阳活动呈现一定的相关性. 所得结果有助于分析不同类型扩展F在形态和机制方面的差异.   相似文献   

11.
The amplitude scintillations data recorded at 244 MHz from the geostationary satellite, FLEETSAT (73°E) at a low latitude station, Waltair (17.7°N, 83.3°E) during the ten year period of high to low solar activity from 2001 to 2010 is considered to study the occurrence characteristics of the VHF scintillations. A close association between the intense scintillations on VHF signals during pre-midnight hours, associated with range type of spread-F on ionograms and a relatively weak and slow fading scintillations during post-midnight hours associated with frequency type of spread-F is observed during the relatively high sunspot years from 2001 to 2004, whereas during the low sunspot years from 2005 to 2010 the scintillation activity as well as spread-F activity are found to be minimum. During both the high and low sunspot years, it is observed that the maximum scintillation activity occurs during equinoctial months followed by winter with the minimum occurrence during summer months. The annual mean percentage occurrence of scintillations is found to be clearly associated with the variations in the annual mean sunspot number. The nocturnal variations in the occurrence of scintillations show the onset of scintillation activity starts from 19:00 h LT with maximum of occurrence around 21:00 h LT. A clear semiannual variation in the occurrence of scintillations is observed during pre-midnight hours with two peaks in equinoctial months of March/April and September/October. The number of scintillation patches observed is found to be more during pre-midnight hours compared to those during post-midnight hours. The most probable scintillation patch duration lies around 30 min. Further, it is also found that the number of scintillation patches with durations of 60 min and more decreases with the increase in the patch duration. It is also observed in general that the scintillation activity is inhibited during geomagnetic disturbed days.  相似文献   

12.
利用海南台站(19.5°N,109.1°E,dip:13.6°N)和磁赤道区的多种地基和天基观测数据,对2011年11月20日观测到的电离层不规则体事件进行了分析.海南台站VHF雷达、电离层闪烁和数字测高仪的综合观测结果表明,当天日落附近发生了强的电离层不规则体事件,主要表现为雷达羽和强闪烁的形态.结合磁赤道区GPS和C/NOFS卫星观测结果进行分析可知,海南台站日落附近出现的雷达羽和强闪烁与南海磁赤道区产生的主等离子体泡存在明显联系.   相似文献   

13.
利用第24太阳活动周中国多个地区GNSS电离层闪烁监测站数据,统计分析中国中低纬地区电离层闪烁特性.结果显示:电离层闪烁主要发生在春秋分及夜间20:00—02:00LT时段;在28°N以南地区,纬度越低电离层闪烁强度和发生概率越高;电离层闪烁发生概率与太阳活动呈正相关,太阳活动上升年电离层闪烁发生概率高于下降年;不同强度地磁活动条件下,电离层闪烁均可能发生,且与地磁活动强度整体呈负相关.通过研究电离层闪烁统计特性,可以为电离层闪烁机理的深入研究、预报及工程应用提供参考.   相似文献   

14.
This study presents unique perspectives of occurrence and strength of low latitude ionospheric scintillations on multiple signals of Global Navigation Satellite System (GNSS) and its frequency dependence using continuous observation records of 780 nights. A robust comparative analysis is performed using scintillation index, S4 and its variation during pre-midnight and post-midnight duration from a GNSS receiver located at Waltair (17.7°N, 83.3°E), India, covering period from July 2014 to August 2016. The results, generally exhibit the impact of declining phase of solar cycle 24 on occurrence and strength of scintillations, which, however, is evidently different over different frequencies transmitted from different GNSS systems. A deeper quantitative analysis uniquely reveals that apart from the solar cycle and seasonal effects, the number of visible satellites of a selected GNSS markedly affect the occurrence and also the strength. Processing scheme of adopting 6 hourly time windows of pre-midnight and post-midnight brought a novel result that the strength and occurrence of strong scintillations decrease with declining solar activity during pre-midnight hours but remarkably increase for moderate and weak scintillations during post-midnight. The physical processes that dominate the post-midnight equatorial ionosphere are invoked to explain such variations that are special during declining solar activity. Finally, inter-GNSS signal analysis in terms of the effect of strong, moderate and weak scintillations is presented with due consideration of number of satellite passes affected and frequency dependence of mean S4. The quantitative results of this study emphasize for the first time effect of low latitude scintillation on GNSS signals in Indian zone under changing background solar and seasonal conditions.  相似文献   

15.
A comparison is made between the subpeak electron density profiles, obtained at selected local hours by vertical ionospheric sounding at the ionospheric station at Sofia (42.6°N; 23.3°E) and the IRI profiles for spring, summer, winter and two levels of solar activity (R = 10 and 100). It is demonstrated that the ionospheric profiles above Sofia are in rather good agreement with the values computed with IRI.  相似文献   

16.
The ionospheric scintillation and TEC (Total Electron Content) variations are studied using GPS (Global Positioning System) measurements at an Indian low latitude station Surat (21.16°N, 72.78°E; Geomagnetic: 12.90°N, 147.35°E), situated near the northern crest of the equatorial anomaly region. The results are presented for data collected during the initial phase of current rising solar activity (low to moderate solar activity) period between January 2009 and December 2011. The results show that within a total number of 656 night-time scintillation events, 340 events are observed with TEC depletions, Rate of change of TEC (ROT) fluctuations and enhancement of Rate of change of TEC Index (ROTI). A comparison of night-time scintillation events from the considered period reveal strong correlation amongst the duration of scintillation activity in S4 index, TEC depletion, ROT fluctuations and ROTI enhancement in the year 2011, followed by the year 2010 and least in 2009. The statistical analyses of scintillation activity with enhancement of ROTI also show that about 70–96% scintillation activity took place in equinox and winter months. Moreover, from a nocturnal variation in occurrence of scintillation with (S4 ? 0.2) and enhancement of ROTI with (ROTI ? 0.5), a general trend of higher occurrence in pre-midnight hours of equinox and winter seasons is observed in both indices during the year 2011 and 2010, while no significant trend is observed in the year 2009. The results suggest the presence of F-region ionospheric irregularities with scale sizes of few kilometers and few hundred meters over Surat and are found to be influenced by solar and magnetic activity.  相似文献   

17.
This study analyzed the occurrence of ionospheric irregularities over South Korea and Japan (mid-latitudes) during the years 2010–2015. The irregularities were quantified using the rate of change of total electron content (TEC) index (ROTI), which detects irregularities with scale sizes in the range of 400 m–2.5 km. The ROTI threshold for an ionospheric irregularity to have occurred was set as 0.1 TECU/min. Results showed that ionospheric irregularities mostly occur during night-time and around local noon-time in the seasons of spring and summer. In addition, the percentage of ionospheric irregularities had a high positive correlation with solar flux (F10.7) (r > 0.72). For the first time, we showed good correspondence between ionospheric irregularities measured by the ROTI index and sporadic E (Es). The median ROTI associated with ionospheric irregularities over a South Korea station (DAEJ) and a Japan station (KGNI) were 0.131 and 0.125 TECU/min, respectively. However, in severe cases of ionospheric irregularities, the ROTI values over DAEJ (KGNI) can reach 0.246 (0.217) and 0.314 (0.339) TECU/min during day and night, respectively. These critical ROTI values can be important in interpreting and monitoring ionospheric irregularity occurrence over South Korea and Japan.  相似文献   

18.
The ionospheric total electron content (TEC) in both northern and southern Equatorial anomaly regions are examined by using the Global Positioning System (GPS) based TEC measurements around 73°E Longitude in the Asian sector. The TEC contour charts obtained at SURAT (21.16°N; 72.78°E; 12.9°N Geomagnetic Lat.) and DGAR (7.27°S; 72.37°E; 15.3°S Geomagnetic Lat.) over 73°E longitude during a very low solar activity phase (2009) and a moderate solar activity (2012) phase are used in this study. The results show the existence of hemispheric asymmetry and the effects of solar activity on the EIA crest in occurrence time, location and strength. The results are also compared with the TEC derived by IRI-2016 Model and it is found that the North-South asymmetry at the EIA region is clearly depicted by IRI-2016 with some discrepancies (up to 20% in the northern hemisphere at SURAT and up to 40% in the southern hemisphere at DGAR station for June Solstice and up to 10% both for SURAT and DGAR for December Solstice). This discrepancy in the IRI-2016 model is found larger during the year 2012 than that during the solar minimum year 2009 at both the hemispheres. Further, an asymmetry index, (Ai) is determined to illustrate the North-South asymmetry observed in TEC at EIA crest. The seasonal, annual and solar flux dependence of this index are investigated during both solstices and compared with the TEC derived by IRI.  相似文献   

19.
A method is presented for automatic detection of spread-F. The method is based on an image recognition technique and is applied to ionograms recorded at the ionospheric station of Tucumán (26.9°S, 294.6°E). The performance achieved is statistically evaluated and demonstrated with significant examples. The proposed method improves Autoscala's ability to reject ionograms with insufficient information, including those featuring Spread-F. Automatic identification of cases of spread-F is of additional interest in Space Weather applications, when it helps detect degraded radio propagation conditions.The present data analysis is a retrospective study but forms the basis for real-time application as an extension of Autoscala’s capabilities.  相似文献   

20.
Using the TEC data at Beijing (39.61°N, 115.89°E)/Yakutsk (62.03°N, 129.68°E) stations of East Asia regions and relevant geomagnetic data from 2010 to 2017, we have studied the time delay of ionospheric storms to geomagnetic storms and compare it with our previous results of Taoyuan (25.02°N, 121.21°E) station (Zhang et al., 2020). The data shows a well-known local time dependence of the time delay, and seasonal dependences are different at these stations. In addition, there is no correlation between the time delay and the magnetic storm intensity /solar activity, except the time delay of negative storms has weakly negative dependence on the solar activity. Comparing with the results of Taoyuan station which is located at EIA region in East Asia, we find that the time delay increases nonlinearly as the latitude decreases due to different ionospheric backgrounds at these places. Moreover, the pre-storm disturbance events are found to have similar statistical characteristics as the pre-storm enhancement in Europe middle latitudes (Bure?ová and La?tovi?ka, 2007). By subtracting the common features of the pre-storm disturbance events, we preliminarily infer that auroral activity might be main driver of the pre-storm disturbance events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号