首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
利用2010年11月至2011年10月IGS提供的全球电子浓度总含量(TEC)数据, 分析太阳活动上升期华南地区(经度110°E, 纬度5°—35°N) 上空电离层赤道异常(EIA)北驼峰的变化特征. 结果显示, 电离层赤道异常北驼峰区TEC峰值I具有明显的季节和半年变化特征; 北驼峰峰值出现的时间T和纬度L的日变化有一个相对较大的变化区间, 其季节和半年变化特征并不明显; 太阳活动对北驼峰变化影响比较明显, 而地磁活动对北驼峰变化影响不明显.   相似文献   

2.
利用位于赤道异常区的深圳站(22.59°N,113.97°E)2011年1月至2012年12月及2015年1月至2015年12月监测到的GPS-TEC数据,统计分析华南地区电离层闪烁与TEC耗空同时出现、电离层闪烁单独出现和TEC耗空单独出现3种现象的时间和空间分布特性.结果表明:这3种现象均主要发生在春秋季节;闪烁与TEC耗空同时出现、闪烁单独出现和TEC耗空单独出现分别主要发生在纬度为19°-23°N,21°-24°N和24°-26°N的空间区域.探测到闪烁和TEC耗空同时出现、闪烁单独出现和TEC耗空单独出现的时间分别主要分布在20:00LT-22:00LT,21:00LT-23:00LT和22:30LT-23:30LT.闪烁与TEC耗空同时出现、闪烁单独出现和TEC耗空单独出现3种现象的时间和空间分布特性对应了华南地区不规则体和赤道等离子体泡(EPBs)从产生到消失的演变过程.   相似文献   

3.
广州电离层观测站位于磁赤道附近(地磁经纬度:183.0°E,11.5°N).根据对18个站电离层资料的分析,广州站位于f_0F_2极大值双驼峰现象北侧的位置;在太阳活动高年期间,f_0F_2极大值在夜间仍然保持存在;另外,电离层骚扰发生的次数多于国内各电离层观测站发生的次数.这些特性都是F_2层赤道异常现象.  相似文献   

4.
用GPS 观测研究电离层TEC 水平梯度   总被引:3,自引:1,他引:2  
双频GPS 用户能自动修正电离层总电子含量(TEC) 引起的延时误差, 但是对于电离层中的不规则体造成的信号闪烁而引起的误差则不能消除. 即使是差分GPS 系统, 电离层误差仍然是其主要的误差源, 其中电离层TEC 梯度将会影响到系统的定位精度和性能. 本文用GPS 方法研究了电离层TEC 的水平梯度问题, 用处于赤道异常区NTUS 台站的GPS 观测数据作了具体计算. 结果表明, 在日落以后到子夜前后电离层垂直TEC 出现了大的涨落, 电离层中的不规则体导致L 波段信号强的闪烁, 同时还伴随着大而快速变化的电离层~TEC 水平梯度. 对比发现, ROTI指数、电离层TEC 水平梯度和电离层垂直TEC 三者之间有很好的对应关系, 它们的变化特征均由电离层中的不规则体引起. 我们认为研究电离层闪烁, 特别是在缺乏S4指数时, 电离层TEC 梯度也可以作为一个重要的可选参数.   相似文献   

5.
利用第24太阳活动周中国多个地区GNSS电离层闪烁监测站数据,统计分析中国中低纬地区电离层闪烁特性.结果显示:电离层闪烁主要发生在春秋分及夜间20:00—02:00LT时段;在28°N以南地区,纬度越低电离层闪烁强度和发生概率越高;电离层闪烁发生概率与太阳活动呈正相关,太阳活动上升年电离层闪烁发生概率高于下降年;不同强度地磁活动条件下,电离层闪烁均可能发生,且与地磁活动强度整体呈负相关.通过研究电离层闪烁统计特性,可以为电离层闪烁机理的深入研究、预报及工程应用提供参考.   相似文献   

6.
利用海南台站和东南亚地区的多种地基和天基观测手段,对2014年7月28日夜间观测到的东亚低纬F区不规则体事件的时空变化及其物理过程进行分析。结果表明,海南台站观测到了罕见的长时间持续的F区电离层不规则体,不同手段观测到的电离层不规则体存在明显的形态差异。不同台站观测到的电离层不规则体活动存在明显的差异。海南台站经度区南北异常峰附近的TEC起伏活动在日落后至午夜附近明显增强,在午夜后明显减弱。C/NOFS卫星轨迹午夜后逐渐接近于磁赤道,且处于较低高度上,几乎总会观测到弱等离子体扰动/泡的发生,与该区域地基观测的弱电离层不规则体活动存在明显的联系。SWARM卫星在黎明海南台站附近经度区仍观测到较强的赤道异常双峰结构,且西侧异常峰区附近仍存在明显的等离子体密度耗空/泡结构。海南台站西侧磁赤道区附近(中南半岛)强对流活动(MCC)激发的重力波种子扰动对东亚低纬区等离子体泡及准周期结构的产生发挥了重要作用。   相似文献   

7.
TEC计算方法探讨和赤道异常北驼峰时空特征测量初析   总被引:1,自引:0,他引:1  
本文探讨了应用最小曲率原理由单站微分多普勒频移数据计算TEC时所遇到的问题和解决办法。处理了用MX1502大地定位接收机于1989年8月和9月先后在陕西临潼和北京观测的NNSS卫星多普勒频移数据,得到了TEC时空分布曲线。分析这些曲线,得到了TEC赤道异常北驼峰时空特征在太阳活动高年(尤其是8月中旬太阳特大质子事件中)的某些结果。  相似文献   

8.
本文介绍在武汉(30.5°N,114.4°E)地区利用微分多普勒方法对电离层赤道异常峰进行跟踪的结果.由观测资料的分析表明,东经115°线附近,电离层赤道异常峰区在我国长沙(28.1°N,113.0°E)以南和广州(23.2°N,113.3°E)以北地段,其北‘驼峰’顶位于衡阳(26.8°N,112.5°E)至英德(24.2°N,113.5°E)一带上空.对异常峰活动特征的研究也获得了一些有益结果.  相似文献   

9.
利用海南台站(19.5°N,109.1°E,dip:13.6°N)和磁赤道区的多种地基和天基观测数据,对2011年11月20日观测到的电离层不规则体事件进行了分析.海南台站VHF雷达、电离层闪烁和数字测高仪的综合观测结果表明,当天日落附近发生了强的电离层不规则体事件,主要表现为雷达羽和强闪烁的形态.结合磁赤道区GPS和C/NOFS卫星观测结果进行分析可知,海南台站日落附近出现的雷达羽和强闪烁与南海磁赤道区产生的主等离子体泡存在明显联系.   相似文献   

10.
地磁暴发生时,电离层会有偏离平均水平的强烈扰动.基于全球电离层TEC及其时间变化率ROTI(Rate of TEC Index)数据,对2014年8月一次中等强度磁暴期间的全球电离层影响进行了分析,探讨了磁暴所引发电离层暴的可能机制.研究发现,本次磁暴伴随有明显的电离层暴效应.磁暴期间:南半球电离层以正相暴为主,北半球电离层暴则整体表现为短暂正相暴后长时间强的负相暴;电离层在北半球的下降比南半球强,并且这种下降持续了约一周时间;低纬区域电离层变化幅度明显小于中纬区域,高纬区域则主要表现为负暴效应;赤道北驼峰出现了明显的南移现象,直至磁赤道两侧双驼峰结构消失.对磁暴期间三个不同扇区的电离层ROTI变化的分析表明:欧洲-非洲扇区磁暴前有电离层闪烁发生,磁暴发生后消失,而东亚-澳大利亚及美洲扇区则无此现象出现.研究结果表明,此次磁暴期间的电离层变化存在明显的时间和空间差异.  相似文献   

11.
Ionospheric scintillation variations are studied using GPS measurements at the low latitude station of Shenzhen (22.59°N, 113.97°E), situated under the northern crest of the equatorial anomaly region, from the Chinese Meridian Project. The results are presented for data collected during the current phase of rising solar activity (low to high solar activity) from December 2010 to April 2014. The results show that GPS scintillation events were largely a nighttime phenomenon during the whole observation period. Scintillation events mainly occurred along the inner edge of the northern crest of the equatorial anomaly in China. The occurrence of scintillations in different sectors of the sky was also investigated, and the results revealed that it is more likely for the scintillations to be observed in the west sector of the sky above Shenzhen. During the present period of study, a total number of 512 total electron content (TEC) depletions and 460 lock loss events were observed. In addition, both of these events are likely to increase during periods of high solar activity, especially because the strong scintillations are often simultaneously accompanied by TEC depletions and lock losses by GPS receivers.  相似文献   

12.
The ionospheric scintillation and TEC (Total Electron Content) variations are studied using GPS (Global Positioning System) measurements at an Indian low latitude station Surat (21.16°N, 72.78°E; Geomagnetic: 12.90°N, 147.35°E), situated near the northern crest of the equatorial anomaly region. The results are presented for data collected during the initial phase of current rising solar activity (low to moderate solar activity) period between January 2009 and December 2011. The results show that within a total number of 656 night-time scintillation events, 340 events are observed with TEC depletions, Rate of change of TEC (ROT) fluctuations and enhancement of Rate of change of TEC Index (ROTI). A comparison of night-time scintillation events from the considered period reveal strong correlation amongst the duration of scintillation activity in S4 index, TEC depletion, ROT fluctuations and ROTI enhancement in the year 2011, followed by the year 2010 and least in 2009. The statistical analyses of scintillation activity with enhancement of ROTI also show that about 70–96% scintillation activity took place in equinox and winter months. Moreover, from a nocturnal variation in occurrence of scintillation with (S4 ? 0.2) and enhancement of ROTI with (ROTI ? 0.5), a general trend of higher occurrence in pre-midnight hours of equinox and winter seasons is observed in both indices during the year 2011 and 2010, while no significant trend is observed in the year 2009. The results suggest the presence of F-region ionospheric irregularities with scale sizes of few kilometers and few hundred meters over Surat and are found to be influenced by solar and magnetic activity.  相似文献   

13.
This paper presents the first results of total electron content (TEC) depletions and enhancement associated with ionospheric irregularities in the low latitude region over Kenya. At the low latitude ionosphere the diurnal behavior of scintillation is driven by the formation of large scale equatorial depletions which are formed by post-sunset plasma instabilities via the Rayleigh–Taylor instability near the magnetic equator. Data from the GPS scintillation receiver (GPS-SCINDA) located at the University of Nairobi (36.8°E, 1.27°S) for March 2011 was used in this study. The TEC depletions have been detected from satellite passes along the line of sight of the signal and the detected depletions have good correspondence with the occurrence of scintillation patches. TEC enhancement has been observed and is not correlated with increases in S4 index and consecutive enhancements and depletions in TEC have also been observed which results into scintillation patches related to TEC depletions. The TEC depletions have been interpreted as plasma irregularities and inhomogeneities in the F region caused by plasma instabilities, while TEC enhancement have been interpreted as the manifestation of plasma density enhancements mainly associated with the equatorial ionization anomaly crest over this region. Occurrence of scintillation does happen at and around the ionization anomaly crest over Kenyan region. The presence of high ambient electron densities and large electron density gradients associated with small scale irregularities in the ionization anomaly regions have been linked to the occurrence of scintillation.  相似文献   

14.
This study presents a statistical analysis of GPS L-band scintillation with data observed from July 2008 to March 2012 at the northern crest of equatorial anomaly stations in Guangzhou and Shenzhen of South China. The variations of the scintillation with local time, season, solar activity and duration of scintillation patches were investigated. The relationship between the scintillation and TEC depletion was also reported. Our results revealed that GPS scintillation occurred from 19:30 LT (pre-midnight) to 03:00 LT (post-midnight). During quiet solar activity years, the scintillation was only observed in pre-midnight hours of equinox months and patches durations were mostly less than 60 min. During high solar activity years, more scintillation occurred in the pre-midnight hours of equinox and winter months; and GPS scintillation started to occur in the post-midnight hours of summer and winter. The duration of scintillation patches extended to 180 min in high solar activity years. Solar activity had a larger effect to strong scintillations (S4 > 0.6) than to weak scintillations (0.6 ? S4 > 0.2). Strong scintillations were accompanied by TEC depletion especially in equinox months. We also discussed the relationship between TEC depletion and plasma bubble.  相似文献   

15.
The occurrence of ionospheric scintillations with S4 ? 0.2 was studied using GPS measurements at Guilin, China (25.29°N, 110.33°E; geomagnetic: 15.04°N, 181.98°E), a station located near the northern crest of the equatorial anomaly. The results are presented for data collected from January 2009 to March 2010. The results show that nighttime amplitude scintillations only took place in February and March of the considered years, while daytime amplitude scintillations occurred in August and December of 2009. Nighttime amplitude scintillations, observed in the south of Guilin, always occurred with phase scintillations, TEC (Total Electron Content) depletions, and ROT (Rate Of change of TEC) fluctuations. However, TEC depletions and ROT fluctuations were weak during daytime amplitude scintillations, and daytime amplitude scintillations always took place simultaneously for most of the GPS satellites which appeared over Guilin in different azimuth directions. Ground-based GPS scintillation/TEC observations recorded at Guilin and signal-to-noise-ratio (SNR) measurements obtained from GPS-COSMIC radio occultation indicate that nighttime and daytime scintillations are very likely caused by ionospheric F region irregularities and sporadic E, respectively. Moreover, strong daytime amplitude scintillations may be associated with the plasma density enhancements in ionospheric E region caused by the Perseid and Geminid meteor shower activities.  相似文献   

16.
The ionospheric total electron content (TEC) in both northern and southern Equatorial anomaly regions are examined by using the Global Positioning System (GPS) based TEC measurements around 73°E Longitude in the Asian sector. The TEC contour charts obtained at SURAT (21.16°N; 72.78°E; 12.9°N Geomagnetic Lat.) and DGAR (7.27°S; 72.37°E; 15.3°S Geomagnetic Lat.) over 73°E longitude during a very low solar activity phase (2009) and a moderate solar activity (2012) phase are used in this study. The results show the existence of hemispheric asymmetry and the effects of solar activity on the EIA crest in occurrence time, location and strength. The results are also compared with the TEC derived by IRI-2016 Model and it is found that the North-South asymmetry at the EIA region is clearly depicted by IRI-2016 with some discrepancies (up to 20% in the northern hemisphere at SURAT and up to 40% in the southern hemisphere at DGAR station for June Solstice and up to 10% both for SURAT and DGAR for December Solstice). This discrepancy in the IRI-2016 model is found larger during the year 2012 than that during the solar minimum year 2009 at both the hemispheres. Further, an asymmetry index, (Ai) is determined to illustrate the North-South asymmetry observed in TEC at EIA crest. The seasonal, annual and solar flux dependence of this index are investigated during both solstices and compared with the TEC derived by IRI.  相似文献   

17.
Following Tanna et al. (2013), we computed the percentage of occurrence of S4 index for the period of 2012–2015 using the data of the dual frequency GPS receiver at the Tripura University, Agartala station (23.76°N, 91.26°E) situated at the northern crest of the equatorial ionization anomaly (EIA) region of the Indian Subcontinent. We have observed discrepancy in the results contradicting the actual scintillation occurrence. The distinctly noticeable discrepancy is that the maximum occurrence month is shifted to April 2013 instead of March 2014. The problem arises due to the denominator term used in the percentage of occurrence ratio i.e. the total number of days of observed scintillation activity during the complete period under consideration. But the conventional percentage of occurrence methodology uses the number of days of observation (the total number of days for which data is available) during each month in the denominator. It correctly assigns the maximum occurrence to March 2014 instead of April 2013 and the obtained monthly statistics follow the solar activity during this period.  相似文献   

18.
The characteristics of nighttime ionospheric scintillations measured at the L-band frequency of 1.575 GHz over Dibrugarh (27.5°N, 95°E, MLAT  17°N, 43° dip) during the ascending half of the solar cycle 24 from 2010 to 2014 have been investigated and the results are presented in this paper. The measurement location is within or outside the zone of influence of the equatorial ionization anomaly depending on solar and geomagnetic activity. Maximum scintillation is observed in the equinoxes irrespective of solar activity with clear asymmetry between March and September. The occurrence frequency in the solstices shifts from minimum in the June solstice in low solar activity to a minimum in the December solstice in high solar activity years. A significant positive correlation of occurrence of scintillations in the June solstice with solar activity has been observed. However, earlier reports from the Indian zone (~75°E) indicate negative or no correlation of scintillation in June solstice with solar activity. Scintillations activity/occurrence in solstices indicates a clear positive correlation with Es recorded simultaneously by a collocated Ionosonde. In equinoxes, maximum scintillations occur in the pre-midnight hours while in solstices the occurrence frequency peaks just after sunset. The incidence of strong scintillations (S4  0.4) increases with increase in solar activity. Strong (S4  0.4) ionospheric scintillations accompanied by TEC depletions in the pre-midnight period is attributed to equatorial irregularities whereas the dusk period scintillations are related to the sporadic-E activity. Present results thus indicate that the current location at the northern edge of the EIA behaves as low as well as mid-latitude location.  相似文献   

19.
The ionospheric total electron content (TEC), derived by analyzing dual frequency signals from the Global Positioning System (GPS) recorded near the Indian equatorial anomaly region, Varanasi (geomagnetic latitude 14°, 55′N, geomagnetic longitude 154°E) is studied. Specifically, we studied monthly, seasonal and annual variations as well as solar and geomagnetic effects on the equatorial ionospheric anomaly (EIA) during the solar minimum period from May 2007 to April 2008. It is found that the daily maximum TEC near equatorial anomaly crest yield their maximum values during the equinox months and their minimum values during the summer. Using monthly averaged peak magnitude of TEC, a clear semiannual variation is seen with two maxima occurring in both spring and autumn. Statistical studies indicate that the variation of EIA crest in TEC is poorly correlated with Dst-index (r = −0.03) but correlated well with Kp-index (r = 0.82). The EIA crest in TEC is found to be more developed around 12:30 LT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号