首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Periodicity in occurrence of magnetic disturbances in polar cap and auroral zone under conditions of steady and powerful solar wind influence on the magnetosphere is analyzed on the example of 9 storm events with distinctly expressed sawtooth substorms (N = 48). Relationships between the polar cap magnetic activity (PC-index), magnetic disturbances in the auroral zone (AL-index) and value of the ring current asymmetry (ASYM index) were examined within the intervals of the PC growth phase and the PC decline phase inherent to each substorm. It is shown that the substorm sudden onsets are always preceded by the PC growth and that the substorm development does not affect the PC growth rate. On achieving the disturbance maximum, the PC and AL indices are simultaneously fall down to the level preceding the substorm, so that the higher the substorm intensity, the larger is the AL and PC drop in the decline phase. The ASYM index increases and decreases in conformity with the PC and AL behavior, the correlation between ASYM and PC being better than between ASYM and AL. Level of the solar wind energy input into the magnetosphere determines periodicity and intensity of disturbances: the higher the coupling function EKL, the higher is substorm intensity and shorter is substorm length. Taking into account the permanently high level of auroral activity and inconsistency of aurora behavior and magnetic onsets during sawtooth substorms, the conclusion is made that auroral ionosphere conductivity is typically high and ensures an extremely high intensity of field-aligned currents in R1 FAC system. The periodicity of sawtooth substorms is determined by recurrent depletions and restorations of R1 currents, which are responsible for coordinated variations of magnetic activity in the polar cap and auroral zone.  相似文献   

2.
The interplanetary magnetic field, geomagnetic variations, virtual ionosphere height h′F, and the critical frequency foF2 data during the geomagnetic storms are studied to demonstrate relationships between these phenomena. We study 5-min ionospheric variations using the first Western Pacific Ionosphere Campaign (1998–1999) observations, 5-min interplanetary magnetic field (IMF) and 5-min auroral electrojets data during a moderate geomagnetic storm. These data allowed us to demonstrate that the auroral and the equatorial ionospheric phenomena are developed practically simultaneously. Hourly average of the ionospheric foF2 and h′F variations at near equatorial stations during a similar storm show the same behavior. We suppose this is due to interaction between electric fields of the auroral and the equatorial ionosphere during geomagnetic storms. It is shown that the low-latitude ionosphere dynamics during these moderate storms was defined by the southward direction of the Bz-component of the interplanetary magnetic field. A southward IMF produces the Region I and Region II field-aligned currents (FAC) and polar electrojet current systems. We assume that the short-term ionospheric variations during geomagnetic storms can be explained mainly by the electric field of the FAC. The electric fields of the field-aligned currents can penetrate throughout the mid-latitude ionosphere to the equator and may serve as a coupling agent between the auroral and the equatorial ionosphere.  相似文献   

3.
4.
Nighttime medium-scale traveling ionospheric disturbances (MSTIDs), which have tilted frontal structures in the midlatitude ionosphere, are investigated by the midlatitude ionosphere electrodynamics coupling (MIECO) model in this study. It has been proposed that the electrodynamic coupling between the E and F regions plays an important role in generating MSTIDs within a few hours. An intriguing aspect of MSTIDs is that they were simultaneously observed at magnetic conjugate locations in the Northern and Southern Hemispheres. In order to study the hemisphere-coupled electrodynamics, the MIECO model has been upgraded to consist of two simulation domains for both hemispheres in which the electrostatic potential is solved by considering electrodynamics in both hemispheres. The simultaneous occurrence of MSTIDs at the magnetic conjugate stations has clearly been reproduced when the F-region neutral wind satisfies the unstable condition in both hemispheres and a sporadic-E layer is given only at the Northern (summer) Hemisphere. Even if the unstable condition is satisfied in the summer hemisphere, an unfavorable F-region neutral wind in the winter hemisphere largely suppresses the growth of MSTIDs in both hemispheres.  相似文献   

5.
One essential component of magnetosphere and ionosphere coupling is the closure of the ring current through Region 2 field-aligned current (FAC). Using the Comprehensive Ring Current Model (CRCM), which includes magnetosphere and ionosphere coupling by solving the kinetic equation of ring current particles and the closure of the electric currents between the two regions, we have investigated the effects of high latitude potential, ionospheric conductivity, plasma sheet density and different magnetic field models on the development of Region 2 field-aligned currents, and the relationship between R2 FACs and the ring current. It is shown that an increase in high latitude potential, ionospheric conductivity or plasma sheet density generally results in an increase in Region 2 FACs’ intensity, but R2 FACs display different local time and latitudinal distributions for changes in each parameter due to the different mechanisms involved. Our simulation results show that the magnetic field configuration of the inner magnetosphere is also an important factor in the development of Region 2 field-aligned current. More numerical experiments and observational results are needed in further our understanding of the complex relationship of the two current systems.  相似文献   

6.
This research examined the variability of foE in the equatorial ionosphere with solar activity within the equatorial ionospheric anomaly region. Ionosonde data recorded at Ouagadougou (lat. 12.4°N, long. 1.5°W and magnetic dip 1.43°N) were engaged to study the transient variations of the critical frequency of the E-layer (foE) and its dependence on solar activity. The study revealed that foE increases with the increase in solar intensity of the sun. The variability of the foE decreases with increases in the solar activity. The maximum value of the foE is at local noon when the ionosphere is stable; the variability at this local time is minimal. The minimum value of the foE is at sunrise and sunset, at this period on local time the equatorial ionosphere recorded its maxima variability. Irrespective of the degree of solar activity, foE is observed to be maximum in June solstice, followed by the equinoxes and minimum in December solstice. Equinoctial asymmetry occurred in the variation of the relative standard deviation of foE with maximum in September/March equinox for low/high solar activity.  相似文献   

7.
For obvious reasons the ionosphere of the polar cap, surrounded by the auroral zone, is only poorly investigated. Even ionosonde data are very scant from geomagnetic latitudes beyond 70°. Since 1997 the European incoherent scatter radar facility EISCAT has an additional installation on Svalbard and has been providing electron density data nearly continuously ever since. These measurements which mainly cover the E- and F-regions are supplemented by rocket data from Heiss Island at a comparable magnetic latitude; these data are more sporadic, but cover lower altitudes and densities. A provisional, steady-state, neural network-based model is presented which uses the data of both sites.  相似文献   

8.
Mass-injection experiments in space plasmas have been conducted for the last twenty years. These injections trace or stain chemical or physical processes, facilitating diagnosis of the natural state of the space plasma; artificially perturb the space plasma away from equilibrium, isolating and controlling selected parameters; simulate natural or artificial states of space plasmas; and utilize the advantages of space as a laboratory to study fundamental plasma physics.We use the Lagopedo ionospheric-depletion experiments to illustrate the special operational aspects of active experiments, including weather, logistics, communications, and real-time diagnostics. The various objectives and techniques of mass-injection experiments are described by example. The CAMEO experiment, a thermite barium release from a satellite over the nightside polar cap, is an excellent example of the use of barium injections to trace upward ion acceleration. The Periquito Dos experiment provided a “snapshot” view of convection electric fields in the dayside polar cusp region. Project Waterhole, an artificial depletion of the topside auroral ionosphere, attempted to modify the equilibrium character of the field-aligned currents and apparently shut off the aurora in a small space-time volume. The Trigger experiment is another example of an active perturbation experiment, wherein the auroral ionospheric transverse conductivities were modified via a cesium injection. The Buaro experiment, a shaped-charged barium injection perpendicular to the local geomagnetic field, resulted in an ion-beam/background-plasma system being displaced from equilibrium, permitting diagnostics of collisionless coupling of the ion beam to the background plasma.  相似文献   

9.
The occurrence characteristics of medium-scale travelling ionospheric disturbances (MSTIDs) were investigated using the Tasman International Geospace Environment Radar (TIGER). From the occurrence study of sea echoes, we found two maxima, one pre-noon and the other after noon. They are less obvious with increase of magnetic activities, and more obvious when Bz is northwards. It is suggested that this maxima were related to fore- and after-noon maxima in the distribution of net field-aligned currents flowing from the magnetosphere to the ionosphere, and that these two regions were sources of atmospheric gravity waves (AGWs) due to enhancement of Hall conductivities in the ionosphere. The Lorentz force is suggested to be a possible mechanism for the excitation of MSTIDs in the dayside ionosphere.  相似文献   

10.
The variations in the horizontal and declination components of the geomagnetic field in response to the interplanetary shocks driven by fast halo coronal mass ejections, fast solar wind streams from the coronal hole regions and the dynamic pressure pulses associated with these events are studied. Close association between the field-aligned current density (j) and the fluctuations in the declination component (ΔDABG) at Alibag is found for intense storm conditions. Increase in the dawn-dusk interplanetary electric field (Ey) and ΔDABG are generally in phase. However, when the magnetospheric electric field is directed from dusk to dawn direction, a prominent scatter occurs between the two. It is suggested that low-latitude ground magnetic data may serve as a proxy for the interplanetary conditions in the solar wind.  相似文献   

11.
Short and long GRBs are thought to be two distinct classes based on their different duration and spectrum. Through the spectral analysis of two similarly selected samples of BATSE short and long GRBs, we show that short GRBs are harder than long events, confirming what found from the comparison of their hardness ratio. However, this spectral diversity seems to be due to a harder low energy spectral component of short GRBs, rather than a (slightly higher) peak energy. Interestingly short GRBs have a spectrum which is similar to the spectrum of the emission of the first 1–2 s of long events. We find evidence that short GRBs are inconsistent with the EpeakEiso correlation defined by long bursts while they follow the same EpeakLiso correlation of long GRBs. These results, coupled to the similar variability timescale of short events and the first seconds of long ones, suggest that a common (or similar) dissipation mechanism could operate in both classes. The difference in the duration would then be due mainly to the central engine lifetime.  相似文献   

12.
13.
The ionospheric scintillation and TEC (Total Electron Content) variations are studied using GPS (Global Positioning System) measurements at an Indian low latitude station Surat (21.16°N, 72.78°E; Geomagnetic: 12.90°N, 147.35°E), situated near the northern crest of the equatorial anomaly region. The results are presented for data collected during the initial phase of current rising solar activity (low to moderate solar activity) period between January 2009 and December 2011. The results show that within a total number of 656 night-time scintillation events, 340 events are observed with TEC depletions, Rate of change of TEC (ROT) fluctuations and enhancement of Rate of change of TEC Index (ROTI). A comparison of night-time scintillation events from the considered period reveal strong correlation amongst the duration of scintillation activity in S4 index, TEC depletion, ROT fluctuations and ROTI enhancement in the year 2011, followed by the year 2010 and least in 2009. The statistical analyses of scintillation activity with enhancement of ROTI also show that about 70–96% scintillation activity took place in equinox and winter months. Moreover, from a nocturnal variation in occurrence of scintillation with (S4 ? 0.2) and enhancement of ROTI with (ROTI ? 0.5), a general trend of higher occurrence in pre-midnight hours of equinox and winter seasons is observed in both indices during the year 2011 and 2010, while no significant trend is observed in the year 2009. The results suggest the presence of F-region ionospheric irregularities with scale sizes of few kilometers and few hundred meters over Surat and are found to be influenced by solar and magnetic activity.  相似文献   

14.
Digital ionosonde and magnetometer observations from a polar cap station are used to estimate the fraction of Region 1 current that flows across the polar cap. For a winter case study using data for 2001 Feb 18 the cross-cap current was 3.9 × 104 A Pedersen current and 6 × 104 A Hall current. This total current is only a small percentage, ∼5%, of the Region 1 current.  相似文献   

15.
The results of modeling of ionospheric disturbances observed in the East Asian region during moderate storms are presented. The numerical model for ionosphere–plasmasphere coupling developed at the ISTP SB RAS is used to interpret the data of observations at ionospheric stations located in the longitudinal sector of 90–130°E at latitudes from auroral zone to equator. There is obtained a reasonable agreement between measurements and modeling results for winter and equinox. In the summer ionosphere, at the background of high ionization by the solar EUV radiation in the quiet geomagnetic period the meridional thermospheric wind strongly impacts the electron concentration in the middle and auroral ionosphere. The consistent calculations of the thermospheric wind permit to obtain the model results which are closer to summer observations. The actual information about the space-time variations of thermosphere and magnetosphere parameters should be taken into account during storms.  相似文献   

16.
This work is a continuation of the previous article and it focuses on low solar activity and modeling effort. NeQuick model uses Epstein layer formalism to model each part of the profile. We study the diurnal and seasonal variations of B2bot, ΔB2 (B2best − B2NeQuick2) and R (B2best/B2NeQuick 2) at Hainan station during low solar activity. The results show it is possible to improve the B2bot parameter of the NeQuick model at that region during low solar activity. Then, we use a function ?(t) with LT in different seasons to correct the B2bot formula of NeQuick 2. The correction shows that (1) By the correction formula, the B2bot of NeQuick is improved. The maximum standard deviation is improved for 9 km. (2) The correction formula is more effective in summer than in equinox and winter and performs better during early morning hours than during the rest of the day.  相似文献   

17.
Magnetic data from a newly commissioned Indian Antarctic station Bharati (corrected geomagnetic (CGM) coordinates 74.7°S, 97.2°E) and closely-spaced IMAGE chain observatories (∼100° magnetic meridian in Northern hemisphere) has been analyzed to study the climatology of substorms which were localized poleward of the standard auroral oval. We considered four austral summers (year 2007–2010) when data from Bharati was available. Several very high latitude substorms were observed in this duration when the solar activity remained unexpectedly low for a long time. Various features of very high latitude substorms, e.g., local time dependence, interplanetary state, hemispherical asymmetry and their nightside low latitude signatures are examined. Events studied here, suggested the following properties of substorms occurring at very high latitudes: (1) maximum occurrence was observed near magnetic midnight (21:00–02:00 MLT). (2) In contradiction to earlier reports, many substorms were observed even during negative IMF Bz condition. In addition, majority of substorms occurred during low or moderate solar wind streams. (3) Magnetic signatures were often pronounced in the winter hemisphere. (4) Even if widely used standard AE indices fail to monitor very high latitude substorms, their low latitude signatures are often evident.  相似文献   

18.
Electron concentration (Ne) inferred from Incoherent Scatter Radar (ISR) measurements has been used to determine the influence of solar flux and geomagnetic activity in the ionospheric E-region over Arecibo Observatory (AO). The approach is based on the determination of column integrated Ne, referred to as E-region total electron content (ErTEC) between 80 and 150 km altitude regions. The results discussed in this work are for the AO nighttime period. The study reveals higher ErTEC values during the low solar flux periods for all the seasons except for summer period. It is found that the E-region column abundance is higher in equinox periods than in the winter for low solar activity conditions. The column integrated Ne during the post-sunset/pre-sunrise periods always exceeds the midnight minima, independent of season or solar activity. This behavior has been attributed to the variations in the coupling processes from the F-region. The response of ErTEC to the geomagnetic variability is also examined for different solar flux conditions and seasons. During high solar flux periods, changes in Kp cause an ErTEC increase in summer and equinox, while producing a negative storm-like effect during the winter. Variations in ErTEC due to geomagnetic activity during low solar flux periods produce maximum variability in the E-region during equinox periods, while resulting in an increase/decrease in ErTEC before local midnight during the winter/summer periods, respectively.  相似文献   

19.
The atmospheric influence caused by the Martian permanent south CO2 ice cap is examined to improve the Global Mars Multiscale Model (GM3) to see if it can significantly improve the representation of south polar meteorology. However, the seasonal carbon dioxide ice in the polar regions is presented in the surface ice simulation by the Global Mars Multiscale Model but the model does not produce a permanent south CO2 ice cap, and the physics code must modify to capture the realistic physical such as ice process detail; probably makes a bias in terms of total CO2 ice and meteorological processes in the model aside from ice formation. The permanent south CO2 ice cap in the model can significantly improve the representation of south polar meteorology for example in predicted surface temperatures, surface pressures, horizontal and zonal winds over the south cap and possible initiation of dust storms at south polar region during the southern summer period.  相似文献   

20.
Fluxes of energetic solar protons penetrate deep into the Earth’s polar cap middle atmosphere. Interacting with molecules of the air they cause additional dissociation and ionization, and the formed NOx, OHy and ions enter chemical and ion-molecular reactions. Induced changes of the ionospheric D-layer are modeled by a 1D model of lower ionosphere with chemistry, using neutral species concentrations calculated by a 1D photochemical time-dependent model. Changes of the electron and ion densities, and the most important ionospheric parameters are calculated after SPE with the onset on July 14, 2000 and the results are compared with our results obtained previously for the October 19, 1989 SPE. It is shown that not only electron density increases after SPE, but also the amount of clusters. It is found that the magnitude of the ionospheric response depends on season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号