首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The height, hmF2, and the electron density, NmF2, of the F2 peak are key model parameters to characterize the actual state of the ionosphere. These parameters, or alternatively the propagation factor, M3000F2, and the critical frequency, foF2, of the F2 peak, which are related to hmF2 and NmF2, are used to anchor the electron density vertical profile computed with different models such as the International Reference Ionosphere ( Bilitza, 2002), as well as for radio propagation forecast purposes. Long time series of these parameters only exist in an inhomogeneous distribution of points over the surface of Earth, where dedicated instruments (typically ionosondes) have been working for many years. A commonly used procedure for representing median values of the aforementioned parameters all over the globe is the one recommended by the ITU-R ( ITU-R, 1997). This procedure, known as the Jones and Gallet mapping technique, was based on ionosondes measurements gathered from 1954 to 1958 by a global network of around 150 ionospheric stations (  and ). Even though several decades have passed since the development of that innovative work, only few efforts have been dedicated to establish a new mapping technique for computing hmF2 and NmF2 median values at global scale or to improve the old method using the increased observational database. Therefore, in this work three different procedures to describe the daily and global behavior of the height of the F2 peak are presented. All of them represent a different and simplified method to estimate hmF2 and are based on different mathematical expressions. The advantages and disadvantages of these three techniques are analyzed, leading to the conclusion that the recommended procedure to represent hmF2 is best characterized by a Spherical Harmonics expansion of degree and order equal to 15, since the differences between the hmF2 values obtained with the Jones and Gallet technique and those obtained using the abovementioned procedure are of only 1%.  相似文献   

2.
We have used the technique of expansion in Empirical Orthogonal Functions (EOFs) to develop regional models of the critical frequencies of E and F2 layers (foE, foF2), peak height (hmF2), and semi-thickness of F2 layer (YmF2) over Pakistan. In the present study levels of solar activity specified by Smoothed Sunspot Number (R) from 10 to 200 are taken into account. The magnetic dip angle for the model ranges from 30° to 60°. We have compared the regional model and the International Reference Ionosphere (IRI) with measurements of three ionosondes in Pakistan. The model parameters foE and foF2 are found overall comparable to the observed hourly median values during daytime at Karachi (geographic latitude = 24.95°N, longitude = 67.13°E, magnetic inclination = 37°), Multan (30.18°N, 71.48°E, 45°) and Islamabad (33.75°N, 73.13°E, 51.5°) during the years 1988, 1996 and 2000. For hmF2 the computed values by regional and IRI model for the year 1995 are found close to each other. However, for YmF2the results are better during daytime as compared to nighttime.  相似文献   

3.
The hourly measurements of M(3000)F2 (M(3000)F2meas) and the hourly quiet-time values of M(3000)F2 (M(3000)F2QT) relative to the ionospheric observatories of Poitiers, Lannion, Dourbes, Slough, Rome, Juliusruh, Kaliningrad, Uppsala, Lyckesele, Sodankyla, and Kiruna as well as the hourly time-weighted accumulation series derived from the geomagnetic planetary index ap (ap(τ)), were considered during the period January 1957–December 2003 and used for the development of 11 short-term forecasting local models (STFLM) of M(3000)F2.  相似文献   

4.
An empirical model of electron density (Ne) was constructed by using the data obtained with an impedance probe on board Japanese Hinotori satellite. The satellite was in circular orbit of the height of 600 km with the inclination of 31 degrees from February 1981 to June 1982. The constructed model gives Ne at any local time with the time resolution of 90 min and between −25 and 25 degrees in magnetic latitude with its resolution of 5 degrees in the range of F10.7 from 150 to 250 under the condition of Kp < 4. Spline interpolations are applied to the functions of day of year, geomagnetic latitude and solar local time, and linear interpolation is applied to the function of F10.7. Longitude dependence of Ne is not taken into account. Our density model can reproduce solar local time variation of electron density at 600 km altitude better than current International Reference Ionosphere (IRI2001) model which overestimates Ne in night time and underestimates Ne in day time. Our density model together with electron temperature model which has been constructed before will enable more understanding of upper ionospheric phenomenon in the equatorial region.  相似文献   

5.
In the coming years, opportunities for remote sensing of electron density in the Earth’s ionosphere will expand with the advent of Galileo, which will become part of the global navigation satellite system (GNSS). Methods for accurate electron density retrieval from radio occultation data continue to improve. We describe a new method of electron density retrieval using total electron content measurements obtained in low Earth orbit. This method can be applied to data from dual-frequency receivers tracking the GPS or Galileo transmitters. This simulation study demonstrates that the method significantly improves retrieval accuracy compared to the standard Abel inversion approach that assumes a spherically symmetric ionosphere. Our method incorporates horizontal gradient information available from global maps of Total Electron Content (TEC), which are available from the International GNSS Service (IGS) on a routine basis. The combination of ground and space measurements allows us to improve the accuracy of electron density profiles near the occultation tangent point in the E and F regions of the ionosphere.  相似文献   

6.
M(3000)F2 estimation of hmF2 based on four different formulated models viz: (1) Shimazaki (1955) (2) Bradley and Dudeney (1973), (3) Dudeney (1974) and (4) Bilitza et al. (1979) at an equatorial station in West Africa during low solar activity period (1995) are used to validate its conformity with observed and International Reference Ionosphere (IRI) model. Local time analyses of data from fifteen (15) selected days during the January and July solstices and April and October equinoxes are used. The results obtained show that the M(3000)F2 estimation of hmF2 from the ionosonde-measured values using the Ionospheric Prediction Service (IPS-42) sounder compared to the observed values which were deduced using an algorithm from scaled virtual heights of quiet day ionograms are highly correlated with Bilitza model. International Reference Ionosphere (IRI 2007) model for the equatorial region also agrees with the formulation developed by Bilitza et al. (1979) for the four different seasons of the year. hmF2 is highest (425 km) in summer (June solstice) season and lowest (386 km) in autumn (September equinox) season with daytimes peaks occurring at 11001200 LT during the solstices and at 1000 LT during the equinoxes respectively. Also, the post-sunset peaks are highest (362 km) at the spring (March equinox) and lowest (308 km) at the summer (June solstice) both occurring between 1800 and 2000 LT.  相似文献   

7.
Nighttime medium-scale traveling ionospheric disturbances (MSTIDs), which have tilted frontal structures in the midlatitude ionosphere, are investigated by the midlatitude ionosphere electrodynamics coupling (MIECO) model in this study. It has been proposed that the electrodynamic coupling between the E and F regions plays an important role in generating MSTIDs within a few hours. An intriguing aspect of MSTIDs is that they were simultaneously observed at magnetic conjugate locations in the Northern and Southern Hemispheres. In order to study the hemisphere-coupled electrodynamics, the MIECO model has been upgraded to consist of two simulation domains for both hemispheres in which the electrostatic potential is solved by considering electrodynamics in both hemispheres. The simultaneous occurrence of MSTIDs at the magnetic conjugate stations has clearly been reproduced when the F-region neutral wind satisfies the unstable condition in both hemispheres and a sporadic-E layer is given only at the Northern (summer) Hemisphere. Even if the unstable condition is satisfied in the summer hemisphere, an unfavorable F-region neutral wind in the winter hemisphere largely suppresses the growth of MSTIDs in both hemispheres.  相似文献   

8.
The electron density profiles in the bottomside F2-layer ionosphere are described by the thickness parameter B0 and the shape parameter B1 in the International Reference Ionosphere (IRI) model. We collected the ionospheric electron density (Ne) profiles from the FORMOSAT-3/COSMIC (F3/C) radio occultation measurements from DoY (day number of year) 194, 2006 to DoY 293, 2008 to investigate the daytime behaviors of IRI-B parameters (B0 and B1) in the equatorial regions. Our fittings confirm that the IRI bottomside profile function can well describe the averaged profiles in the bottomside ionosphere. Analysis of the equatorial electron density profile datasets provides unprecedented detail of the behaviors of B0 and B1 parameters in equatorial regions at low solar activity. The longitudinal averaged B1 has values comparable with IRI-2007 while it shows little seasonal variation. In contrast, the observed B0 presents semiannual variation with maxima in solstice months and minima in equinox months, which is not reproduced by IRI-2007. Moreover, there are complicated longitudinal variations of B0 with patterns varying with seasons. Peaks are distinct in the wave-like longitudinal structure of B0 in equinox months. An outstanding feature is that a stable peak appears around 100°E in four seasons. The significant longitudinal variation of B0 provides challenges for further improving the presentations of the bottomside ionosphere in IRI.  相似文献   

9.
Vertical total electron content (VTEC) observed at Mbarara (geographic co-ordinates: 0.60°S, 30.74°E; geomagnetic coordinates: 10.22°S, 102.36°E), Uganda, for the period 2001–2009 have been used to study the diurnal, seasonal and solar activity variations. The daily values of the 10.7 cm radio flux (F10.7) and sunspot number (R) were used to represent Solar Extreme Ultraviolet Variability (EUV). VTEC is generally higher during high solar activity period for all the seasons and increases from 0600 h LT and reaches its maximum value within 1400 h–1500 h LT. All analysed linear and quadratic fits demonstrate positive VTEC-F10.7 and positive VTEC-R correlation, with all fits at 0000 h and 1400 h LT being significant with a confidence level of 95% when both linear and quadratic models are used. All the fits at 0600 h LT are insignificant with a confidence level of 95%. Generally, over Mbarara, quadratic fit shows that VTEC saturates during all seasons for F10.7 more than 200 units and R more than 150 units. The result of this study can be used to improve the International Reference Ionosphere (IRI) prediction of TEC around the equatorial region of the African sector.  相似文献   

10.
A new neural network (NN) based global empirical model for the foF2 parameter, which represents the peak electron density has been developed using extended temporal and spatial geophysical relevant inputs. The first results from this new model were presented at the International Reference Ionosphere (IRI) 2006 workshop in Buenos Aires, Argentina, and showed that this new model would be a suitable replacement for the URSI and CCIR maps currently used within the IRI model for the purpose of F2 peak electron density predictions. Measured ground based ionosonde data, from 85 global stations, spanning the period 1995–2005 and, for a few stations from 1976 to 1986, obtained from various resources of the World Data Centre (WDC) archives (Space Physics Interactive Data Resource SPIDR, the Digital Ionogram Database, DIDBase, and IPS Radio and Space Services) have been used for training a NN.  相似文献   

11.
The variability of the F2-layer even during magnetically quiet times are fairly complex owing to the effects of plasma transport. The vertical E × B drift velocities (estimated from simplified electron density continuity equation) were used to investigate the seasonal effects of the vertical ion drifts on the bottomside daytime ionospheric parameters over an equatorial latitude in West Africa, Ibadan, Nigeria (Geographic: 7.4°N, 3.9°E, dip angle: 6°S) using 1 year of ionsonde data during International Geophysical Year (IGY) of 1958, that correspond to a period of high solar activity for quiet conditions. The variation patterns between the changes of the vertical ion drifts and the ionospheric F2-layer parameters, especially; foF2 and hmF2 are seen remarkable. On the other hand, we observed strong anti-correlation between vertical drift velocities and h′F in all the seasons. We found no clear trend between NmF2 and hmF2 variations. The yearly average value of upward daytime drift at 300 km altitude was a little less than the generally reported magnitude of 20 ms−1 for equatorial F-region in published literature, and the largest upward velocity was roughly 32 ms−1. Our results indicate that vertical plasma drifts; ionospheric F2-layer peak height, and the critical frequency of F2-layer appear to be somewhat interconnected.  相似文献   

12.
13.
14.
This is to investigate ways of improving the Equatorial F2-layer peak heights estimated from M(3000)F2 ionosonde data measured using the Ionospheric Prediction Service (IPS-42) sounder at Ouagadougou, Burkina Faso (Latitude +12.4°N, Longitude +1.5°W, Dip latitude +5.9°N) during a low solar activity year (1995). For this purpose, we have compared the observed hmF2 (hmF2obs) deduced using an algorithm from scaled virtual heights of quiet day ionograms and the predicted hmF2 values which is given by the IRI 2007 model (hmF2IRI 2007) with the ionosonde measured M(3000)F2 estimation of the hmF2 values (hmF2est) respectively. The correlation coefficients R2 for all the seasons were found to range from 0.259 to 0.692 for hmF2obs values, while it ranges from 0.551 to 0.875 for the hmF2IRI 2007 values. During the nighttime, estimated hmF2 (hmF2est) was found to be positively correlated with the hmF2obs values by the post-sunset peak representation which is also represented by the hmF2IRI 2007 values. We also investigated the validity of the hmF2est values by finding the percentage deviations when compared with the hmF2obs and hmF2IRI 2007.  相似文献   

15.
Multi-channel Global Positioning System (GPS) carrier phase signals, received by the six low Earth orbiting (LEO) satellites from the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) program, were used to undertake active limb sounding of the Earth’s atmosphere and ionosphere via radio occultation. In the ionospheric radio occultation (IRO) data processing, the standard Shell inversion technique (SIT), transformed from the traditional Abel inversion technique (AIT), is widely used, and can retrieve good electron density profiles. In this paper, an alternative SIT method is proposed. The comparison between different inversion techniques will be discussed, taking advantage of the availability of COSMIC datasets. Moreover, the occultation results obtained from the SIT and alternative SIT at 500 km and 800 km, are compared with ionosonde measurements. The electron densities from the alternative SIT show excellent consistency to those from the SIT, with strong correlations over 0.996 and 0.999 at altitudes of 500 km and 800 km, respectively, and the peak electron densities (NmF2) from the alternative SIT are equivalent to the SIT, with 0.839 vs. 0.844, and 0.907 vs. 0.909 correlation coefficients when comparing to those by the ionosondes. These results show that: (1) the NmF2 and hmF2 retrieved from the SIT and alternative SIT are highly consistent, and in a good agreement with those measured by ionosondes, (2) no matter which inversion technique is used, the occultation results at the higher orbits (∼800 km) are better than those at the lower orbits (∼500 km).  相似文献   

16.
17.
This paper discusses the ability of the International Reference Ionosphere IRI-2007 storm time model to predict foF2 ionospheric parameter during geomagnetic storm periods. Experimental data (based on availability) from two low latitude stations: Vanimo (geographic coordinates, 2.7 °S, 141.3 °E, magnetic coordinates, 12.3 °S, 212.50 °E) and Darwin (geographic coordinates, 12.45 °S, 130.95 °E, magnetic coordinates, 22.9 °S, 202.7 °E) during nine storms that occurred in 2000 (Rz12 = 119), 2001(Rz12 = 111) and 2003 (Rz12 = 64) are compared with those obtained by the IRI-2007 storm model. The results obtained show that the percentage deviation between the experimental and IRI predicted foF2 values during these storm periods is as high as 100% during the main and recovery phases. Based on the values of “relative deviation module mean” (RDMM) obtained (i.e. between 0.08 and 0.60), it is observed that there is a reasonable to poor agreement between measured foF2 values and the IRI-storm model prediction values during main and recovery phases of the storms under investigation. As a result, in addition to other studies that have been carried out from different sectors, more studies are required to be carried out. This will enable IRI community to improve on the present performance of the model. In general the IRI-storm model predictions follow normal trend of the foF2 measured values but does not reproduce well the measured values.  相似文献   

18.
Addition of calcium lactate and vitamin C, a mild heating, deep-freezing, and gamma irradiation at 25 kGy were conducted to prepare Kimchi as a ready-to-eat space food. It was confirmed that the space food was sterilized by an irradiation at 25 kGy through incubation at 37 °C for 30 days. The hardness of the Space Kimchi (SK) was lower than the untreated Kimchi (CON), but higher than the irradiated Kimchi (IR). Also, this result was supported by the scanning electron microscopic observation. Sensory attributes of the SK were similar to CON, and maintained during preservation at 35 °C for 30 days. According to the Ames test, Kimchi sterilized with a high-dose irradiation exerted no mutagenic activity in the bacterial strains of Salmonella typhimurium. And, the SK was certificated for use in space flight conditions during 30 days by the Russian Institute of Biomedical Problems.  相似文献   

19.
The higher plant Wolffia arrhiza is regarded to be well suited concerning the provision of photosynthetic products in the cycle of matter of a Controlled Ecological Life Support System (CELSS) to be established in the context of extraterrestrial, human-based colonization and long-term space flight. Since UV radiation is one major extraterrestrial environmental stress for growth of any plant, effects of UV-B radiation on W. arrhiza were assessed in the present study. We found that UV-B radiation significantly inhibited photosynthetic CO2 assimilation activity, and the contents of chlorophyll a, chlorophyll b (Chl a, Chl b) and carotenoids considerably decreased when plants were exposed to UV-B radiation for 12 h. High UV-B radiation also declined the quantum yield of primary photochemistry (φpo), the quantum yield for electron transport (φEo) and the efficiency per trapped excitation (Ψo) in W. arrhiza simultaneously, while the amount of active PSII reaction centers per excited cross section (RC/CS) and the total number of active reaction centers per absorption (RC/ABS) had comparative changes. These results indicate that the effects of UV-B radiation on photosynthesis of W. arrhiza is due to an inhibition of the electron transport and via inactivation of reaction centers, but the inhibition may take place at more than one site in the photosynthetic apparatus.  相似文献   

20.
Neural networks (NNs) have been applied to ionospheric predictions recently. This paper uses radial basis function neural network (RBF-NN) to forecast hourly values of the ionospheric F2 layer critical frequency(foF2), over Wuhan (30.5N, 114.3E), China. The false nearest neighbor method is used to determine the embedding dimension, and the principal component analysis (PCA) is used to reduce noise and dimension. The whole study is based on a sample of about 26,000 observations of foF2 with 1-h time resolution, derived during the period from January 1981 to December 1983. The performance of RBF-NN is estimated by calculating the normalized root-mean-squared (NRMSE) error, and its results show that short-term predictions of foF2 are improved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号