首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
《中国航空学报》2016,(2):346-357
A promising strategy of synthetic jet arrays(SJA) control for NACA0021 airfoil in preventing flow separation and delaying stall is investigated. Through aerodynamic forces, flowfield and velocity profiles measurements, it indicates that the synthetic jet(SJ) could enlarge the mixing of the shear layer and then enhance the stability of boundary layer, resulting in scope reduction of the flow separation zone. Furthermore, the control effects of dual jet arrays positioned at 15%c(Actuator 1) and 40%c(Actuator 2) respectively are systematically investigated with different jet parameters, such as two typical relative phase angles and various incline angles of the jet. The jet closer to the leading edge of airfoil is more advantageous in delaying the stall of airfoil, and overall,the flow control performances of jet arrays are better than those of single actuator. At the angle of attack(Ao A) just approaching and larger than the stall Ao A, jet array with 180° phase difference could increase the lift coefficient more significantly and prevent flow separation. When momentum coefficient of the jet arrays is small, a larger jet angle of Actuator 2 is more effective in improving the maximum lift coefficient of airfoil. With a larger momentum coefficient of jet array, a smaller jet angle of Actuator 2 is more effective.  相似文献   

2.
Numerical simulations were carried out to investigate the effects of synthetic jet actuation frequency on the separated flow in a diffusing S-duct. The Reynolds number based on the entrance height was 9.78×105. At first, the numerical model was validated with experimental data, and then, the interaction between the separated flow and the synthetic jets at different frequencies was discussed. The results demonstrate that the control effect is significantly dependent on the momentum mixing enhancement between inside of the separated boundary layer and the outer flow. There exists a narrow range of actuation frequency, in which effective separation control can be achieved using synthetic jets. A dimensionless frequency F+=1.0 is identified as the optimal frequency, with a momentum coefficient of 1.62×10-3, the separation area is reduced about 46%, and the aerodynamic performance of the S-duct is also greatly improved compared to uncontrolled case. Further analysis reveals that the choice of actuation frequency is mainly determined by the momentum flux produced by a single ejection and the spacing between adjacent ejections, the optimal frequency case can be understood as a balance between the two factors. In addition, it is found that the synthetic jets can also suppress the secondary flows while decreasing the separation.   相似文献   

3.
Application of Active Flow Control Technique for Gust Load Alleviation   总被引:2,自引:2,他引:0  
A new gust load alleviation technique is presented in this paper based on active flow control. Numerical studies are conducted to investigate the beneficial effects on the aerodynamic characteristics of the quasi "Global Hawk" airfoil using arrays of jets during the gust process. Based on unsteady Navier-Stokes equations, the grid-velocity method is introduced to simulate the gust influence, and dynamic response in vertical gust flow perturbation is investigated for the airfoil as well. An unsteady surface transpiration boundary condition is enforced over a user specified portion of the airfoil’s surface to emulate the time dependent velocity boundary conditions. Firstly, after applying this method to simulate typical NACA0006 airfoil gust response to a step change in the angle of attack, it shows that the indicial responses of the airfoil make good agreement with the exact theoretical values and the calculated values in references. Furthermore, gust response characteristic for the quasi "Global Hawk" airfoil is analyzed. Five kinds of flow control techniques are introduced as steady blowing, steady suction, unsteady blowing, unsteady suction and synthetic jets. The physical analysis of the influence on the effects of gust load alleviation is proposed to provide some guidelines for practice. Numerical results have indicated that active flow control technique,as a new technology of gust load alleviation, can affect and suppress the fluid disturbances caused by gust so as to achieve the purpose of gust load alleviation.  相似文献   

4.
In order to alleviate the dynamic stall effects in helicopter rotor, the sequential quadratic programming(SQP) method is employed to optimize the characteristics of airfoil under dynamic stall conditions based on the SC1095 airfoil. The geometry of airfoil is parameterized by the class-shape-transformation(CST) method, and the C-topology body-fitted mesh is then automatically generated around the airfoil by solving the Poisson equations. Based on the grid generation technology, the unsteady Reynolds-averaged Navier-Stokes(RANS) equations are chosen as the governing equations for predicting airfoil flow field and the highly-efficient implicit scheme of lower–upper symmetric Gauss–Seidel(LU-SGS) is adopted for temporal discretization. To capture the dynamic stall phenomenon of the rotor more accurately, the Spalart–Allmaras turbulence model is employed to close the RANS equations. The optimized airfoil with a larger leading edge radius and camber is obtained. The leading edge vortex and trailing edge separation of the optimized airfoil under unsteady conditions are obviously weakened, and the dynamic stall characteristics of optimized airfoil at different Mach numbers, reduced frequencies and angles of attack are also obviously improved compared with the baseline SC1095 airfoil. It is demonstrated that the optimized method is effective and the optimized airfoil is suitable as the helicopter rotor airfoil.  相似文献   

5.
In this paper, the techniques to manage and control the flow over airfoils by using the external unsteady excitations are investigated. The mechanisms of these excitation effects are also explored. The principal goal of this study is to gain a better understanding and to find the possible ways for enhancing the aerodynamic efficients. The experimental investigations are carried out in two low-speed wind tunnels. The test models are two dimensional airfoils with different section geometries. Four means of excitations have been used in these experiments. (1) The pitch oscillation of the airfoil high-angle-of-attack situation. (2) The moving surface effects of the airfoil with a leading edge rotating cylinder. (3) Oscillating leading edge flaperon. (4) Small oscillating spoiler located near the leading edge of the airfoil. The lift, drag and pitch moment coefficients are measured in these experiments. But, we will put the emphasis only on the "dynamic amplifying effects" on aerodynamic lift in this paper.  相似文献   

6.
A 15° swept wing with dielectric barrier discharge plasma actuator is designed.Experimental study of flow separation control with nanosecond pulsed plasma actuation is performed at flow velocity up to 40 m/s. The effects of the actuation frequency and voltage on the aerodynamic performance of the swept wing are evaluated by the balanced force and pressure measurements in the wind tunnel. At last, the performances on separation flow control of the three types of actuators with plane and saw-toothed exposed electrodes are compared. The optimal actuation frequency for the flow separation control on the swept wing is detected, namely the reduced frequency is 0.775, which is different from 2-D airfoil separation control. There exists a threshold voltage for the low swept wing flow control. Before the threshold voltage, as the actuation voltage increases, the control effects become better. The maximum lift is increased by 23.1% with the drag decreased by 22.4% at 14°, compared with the base line. However, the best effects are obtained on actuator with plane exposed electrode in the low-speed experiment and the abilities of saw-toothed actuators are expected to be verified under high-speed conditions.  相似文献   

7.
《中国航空学报》2016,(3):585-595
In this paper,the effects of icing on an NACA 23012 airfoil have been studied.Experiments were applied on the clean airfoil,runback ice,horn ice,and spanwise ridge ice at a Reynolds number of 0.6 106 over angles of attack from 8° to 20°,and then results are compared.Generally,it is found that ice accretion on the airfoil can contribute to formation of a flow separation bubble on the upper surface downstream from the leading edge.In addition,it is made clear that spanwise ridge ice provides the greatest negative effect on the aerodynamic performance of the airfoil.In this case,the stall angle drops about 10° and the maximum lift coefficient reduces about50% which is hazardous for an airplane.While horn ice leads to a stall angle drop of about 4° and a maximum lift coefficient reduction to 21%,runback ice has the least effect on the flow pattern around the airfoil and the aerodynamic coefficients so as the stall angle decreases 2° and the maximum lift reduces about 8%.  相似文献   

8.
This paper presents a numerical prediction of the unsteady flow field around oscillating airfoils at high angles of attack by solving unsteady Reynolds-averaged Navier-Stokes equations with SST turbulence model in order to simulate the effects of wind tunnel model vibrations on the aerodynamic properties of airfoils,especially high-aspect-ratio wings in a wind tunnel.The effects of the phase lagging between different modes of oscillations,i.e.,the airfoil plunging oscillation mode,the pitching oscillation mode,and the forward-backward oscillation mode,are also studied.It is shown that the vibrations (oscillations) of airfoils can cause the unsteady shedding of large-size separated vortex to precede the stationary stall incidence,hence lead to a stall onset at some earlier (lower) incidence than that in the steady sense.The different phase lagging has different effect on the flow field.When the pitching oscillation mode has small phase lagging behind the plunging oscillation mode,the effect of vibrations is large.Besides,if the amplitude of the oscillations is large enough,and the different modes of vibrations match or combine appropriately,the unsteady stall may occur 2° earlier in angle of attack than the case where airfoils keep stationary.  相似文献   

9.
The plasma synthetic jet is a novel flow control approach which is currently being studied. In this paper its characteristic and control effect on supersonic flow is investigated both experimentally and numerically. In the experiment, the formation of plasma synthetic jet and its propagation velocity in quiescent air are recorded and calculated with time resolved schlieren method. The jet velocity is up to 100 m/s and no remarkable difference has been found after changing discharge parameters. When applied in Mach 2 supersonic flow, an obvious shockwave can be observed. In the modeling of electrical heating, the arc domain is not defined as an initial condition with fixed temperature or pressure, but a source term with time-varying input power density, which is expected to better describe the influence of heating process. Velocity variation with different heating efficiencies is presented and discussed and a peak velocity of 850 m/s is achieved in still air with heating power density of 5.0 · 1012W/m3. For more details on the interaction between plasma synthetic jet and supersonic flow, the plasma synthetic jet induced shockwave and the disturbances in the boundary layer are numerically researched. All the results have demonstrated the control authority of plasma synthetic jet onto supersonic flow.  相似文献   

10.
Effect of a transverse plasma jet on a shock wave induced by a ramp   总被引:1,自引:0,他引:1  
We conducted experiments in a wind tunnel with Mach number 2 to explore the evolution of a transverse plasma jet and its modification effect on a shock wave induced by a ramp with an angle of 24°. The transverse plasma jet was created by arc discharge in a small cylindrical cavity with a 2 mm diameter orifice. Three group tests with different actuator arrangements in the spanwise or streamwise direction upstream from the ramp were respectively studied to compare their disturbances to the shock wave. As shown by a time-resolved schlieren system, an unsteady motion of the shock wave by actuation was found: the shock wave was significantly modified by the plasma jet with an upstream motion and a reduced angle. Compared to spanwise actuation, a more intensive impact was obtained with two or three streamwise actuators working together. From shock wave structures, the control effect of the plasma jet on the shock motion based on a thermal effect, a potential cause of shock modification, was discussed. Furthermore, we performed a numerical simulation by using the Improved Delayed Detached Eddy Simulation(IDDES) method to simulate the evolution of the transverse plasma jet plume produced by two streamwise actuators. The results show that flow structures are similar to those identified in schlieren images. Two streamwise vortices were recognized, which indicates that the higher jet plume is the result of the overlap of two streamwise jets.  相似文献   

11.
翼型分离流动主动控制实验   总被引:2,自引:2,他引:0  
设计制作了两种布局形式的压电式合成射流致动器, 采用热线风速仪在静止环境下对长方形喷口的速度场进行了测量, 结果表明致动器喷口法向喷出最大速度可达到21.32 m/s.开展了基于合成射流技术的翼型分离流动主动控制实验, 致动器采用倾斜喷出时速度为10 m/s量级, 有效推迟了翼型表面流动的分离, 改善了翼型的失速特性, 最大升力系数提高11.36%, 失速迎角增加3°.与此同时发现动量系数达到10-3量级时分离流动主动控制效果显著, 动量系数小于10-4量级分离流动控制将几乎没有效果.   相似文献   

12.
A numerical study of separation control has been made to investigate aerodynamic characteristics of NACA23012 airfoil with synthetic jets. Computed results demonstrated that stall characteristics and control surface performance could be substantially improved by resizing separation vortices. The maximum lift was obtained when the separation point coincides with the synthetic jet location and the non-dimensional frequency is about 1. In addition, separation control effect was proportional to the peak velocity of the synthetic jet. It was observed that the actual flow control mechanism and flow structure is fundamentally different depending on the range of synthetic jet frequency. For low frequency range, small vortices due to synthetic jet penetrated to the large leading edge separation vortex, and as a result, the size of the leading edge vortex was remarkably reduced. For high frequency range, however, small vortex did not grow up enough to penetrate into the leading edge separation vortex. Instead, synthetic jet firmly attached the local flow and influenced the circulation of the virtual airfoil shape which is the combined shape of the main airfoil with the separation vortex. As a way to reduce the jet peak velocity, performance of a multi-array synthetic jet was investigated. Moreover, a high frequency multi-location synthetic jet was exploited to efficiently eliminate the unstable flow structure which was observed in low frequency range. Finally, by changing the phase angle in multi-location synthetic jets, highly controlled flow characteristics could be obtained with multi-array/multi-location synthetic jets. This shows efficiency of the current approach in separation control using synthetic jet.  相似文献   

13.
《中国航空学报》2020,33(10):2535-2554
Introducing active flow control into the design of flapping wing is an effective way to enhance its aerodynamic performance. In this paper, a novel active flow control technology called Co-Flow Jet (CFJ) is applied to flapping airfoils. The effect of CFJ on aerodynamic performance of flapping airfoils at low Reynolds number is numerically investigated using Unsteady Reynolds Averaged Navier-Stokes (URANS) simulation with Spalart-Allmaras (SA) turbulence model. Numerical methods are validated by a NACA6415-based CFJ airfoil case and a S809 pitching airfoil case. Then NACA6415 baseline airfoil and NACA6415-based CFJ airfoil with jet-off and jet-on are simulated in flapping motion, with Reynolds number 70,000 and reduced frequency 0.2. As a result, CFJ airfoils with jet-on generally have better lift and thrust characteristics than baseline airfoils and jet-off airfoil when Cμ is greater than 0.04, which results from the CFJ effect of reducing flow separation by injecting high-energy fluid into boundary layer. Besides, typical kinematic and geometric parameters, including the reduced frequency and the positions of the suction and injection slot, are systematically studied to figure out their influence on aerodynamic performance of the CFJ airfoil. And a variable Cμ jet control strategy is proposed to further improve effective propulsive efficiency. Compared with using constant Cμ, an increase of effective propulsive efficiency by 22.6% has been achieved by using prescribed variable Cμ for NACA6415-based CFJ airfoil at frequency 0.2. This study may provide some guidance to performance enhancement for Flapping wing Micro Air Vehicles (FMAV).  相似文献   

14.
The effects of synthetic jet control on unsteady dynamic stall over rotor airfoil are investigated numerically. A moving-embedded grid method and an Unsteady Reynolds Averaged Navier-Stokes(URANS) solver coupled with k-x Shear Stress Transport(SST) turbulence model are established for predicting the complex flowfields of oscillatory airfoil under jet control. Additionally, a velocity boundary condition modeled by sinusoidal function has been developed to fulfill the perturbation effect of periodic jet. The validity of present CFD method is evaluated by comparisons of the calculated results of baseline dynamic stall case for rotor airfoil and jet control case for VR-7 B airfoil with experimental data. Then, parametric analyses are conducted emphatically for an OA212 rotor airfoil to investigate the effects of jet control parameters(jet location, dimensionless frequency, momentum coefficient, jet angle, jet type and dual-jet) on dynamic stall characteristics of rotor airfoil. It is demonstrated by the calculated results that efficiency of jet control could be improved with specific momentum coefficient and jet angle when the jet is located near separation point of rotor airfoil. Furthermore, the dual-jet could improve control efficiency more obviously on dynamic stall of rotor airfoil with respect to the unique jet, and the influence laws of dual-jet's angles and momentum coefficients on control effects are similar to those of the unique jet. Finally,unsteady aerodynamic characteristics of rotor via synthetic jet which is located on the upper surface of rotor blade in forward flight are calculated, and as a result, the aerodynamic characteristics of rotor are improved compared with the baseline. The results indicate that synthetic jet has the capability in improving aerodynamic characteristics of rotor.  相似文献   

15.
旋翼翼型经常工作在大迎角来流条件下,流动分离普遍存在。通过在具有分离流动的翼型表面施加零质量射流控制,可以实现对流动分离的抑制,达到增升减阻、推迟失速的目的。本文通过对某旋翼翼型的流动控制的计算,采用数值模拟方法研究了零质量射流主动流动控制机理,并对影响零质量射流控制效果的射流喷角、动量系数和无量纲频率三个控制参数进行了分析比较,得出了一些有意义的结论。  相似文献   

16.
合成双射流控制NACA0015翼型大攻角流动分离试验研究   总被引:2,自引:0,他引:2  
李玉杰  罗振兵  邓雄  孙健  沈铮 《航空学报》2016,37(3):817-825
设计了一种卧式合成双射流激励器(DSJA),并对其在翼展中段控制NACA0015翼型大攻角流动完全分离进行试验研究,分析了合成双射流激励器两射流出口位置及射流能量对控制机翼流动分离的影响规律。结果表明:合成双射流激励器对机翼大攻角流动分离具有很强的控制能力,可显著提高机翼流动分离攻角;合成双射流激励器两射流出口相对分离点的位置是影响控制效果的重要参数;合成双射流激励器两出口任一出口位于分离点之前,且越靠近分离点,其对边界层分离的控制效果越好,并且当分离点位于合成双射流激励器两出口之间,且离第一出口位置较近时,合成双射流"接力"控制机翼分离的效果更加明显;与合成射流"单射流"相比,合成双射流"两射流"对分离点位置的有效控制区域明显增大。此外,提高合成双射流激励器的射流能量,其控制机翼流动分离的能力提高。  相似文献   

17.
合成双射流控制翼型分离流动的数值研究   总被引:4,自引:0,他引:4  
合成双射流激励器是合成射流技术发展的最新成果,所形成的射流具有更高能量、流动更稳定的特点。采用数值模拟的方法,对比研究了合成射流与合成双射流对翼型分离流动的改善效果。结果表明:合成射流可以将翼型失速攻角提高2°、最大升力系数增加18%,合成双射流可以将翼型失速攻角提高4°、最大升力系数增加35%,证明了合成双射流具有更好的分离流动控制效果。另外着重分析了合成双射流工作频率和动量系数对控制效果的影响,发现当激励器工作频率为流场特征频率的1和2倍时,对翼型气动特性的改善效果最好,同时控制效果会随动量系数的增加而增大。  相似文献   

18.
Recently, non-equilibrium plasma assisted combustion (PAC) has been found to be promising in reducing the ignition delay time in hypersonic propulsion system. NO x produced by non-equilibrium plasma can react with intermediates during the fuel oxidation process and thereby has influence on the combustion process. In this study, the effects of NO x addition on the ignition process of both the homogeneous ethylene/air mixtures and the non-premixed diffusion layer are examined numerically. The detailed chemistry for ethylene oxidization together with the NO x sub-mechanism is included in the simulation. Reaction path analysis and sensitivity analysis are conducted to give a mechanistic interpretation for the ignition enhancement by NO x addition. It is found that for both the homogenous and non-premixed ignition processes at normal and elevated pressures, NO 2 addition has little influence on the ignition delay time while NO addition can significantly promote the ignition process. The ignition enhancement is found to be caused by the promotion in hydroxyl radical production which quickly oxidizes ethylene. The promotion in hydroxyl radical production by NO addition is achieved in two ways:one is the direct production of OH through the reaction HO2+NO = NO2+OH, and the other is the indirect production of OH through the reactions NO+O2=NO2+O and C2H4+O = C2H3+OH. Moreover, it is found that similar to the homogeneous ignition process, the acceleration of the diffusion layer ignition is also controlled by the reaction HO2+NO = NO2+OH.  相似文献   

19.
数值研究了合成射流控制高速压气机静叶栅吸力面角区分离,对比分析了不同射流结构对叶栅内流场结构及气动性能的影响。研究结果表明:合成射流通过周期性地吹气和吸气推迟角区分离、降低总压损失,由于吹气和吸气阶段的作用效果不同,使得叶栅出口损失系数的改善效果呈现出周期性波动。合成射流对通道涡以及角区二次流的有效控制是其取得良好控制效果的关键,当冲角为2°时,局部、全叶高方案最大可使总压损失系数分别降低22.2%和23.8%。由于局部叶高方案无法控制叶展中部的流动,造成该区域的尾迹损失增大,从而导致其流动控制效果弱于全叶高方案。两种射流结构都具有良好的变工况适应特性,全叶高方案在大冲角时逐渐体现出其优势,当冲角为4°时,总压损失系数的改善幅度相比局部叶高方案提高了2.8%。   相似文献   

20.
For the present investigations of dynamic stall a supercritical airfoil was chosen. This new airfoil designed by DLR will be used in dynamic stall control research activities (project ADASYS) planned for the near future: the leading edge portion of the airfoil will be drooped down dynamically to improve dynamic stall characteristics on the retreating side during blade motion. The optimised transonic properties of the airfoil, i.e., reduction of shock strength over a Mach number range will improve in addition the performance of the advancing rotor blade. Dynamic stall experiments on the rigid supercritical airfoil have first been carried out in the DNW-TWG transonic wind tunnel with a 1 m × 1 m cross section of the test section and adaptive top and bottom – walls. This tunnel has the advantage to cover the speed range of both retreating and advancing blade. Emphasis has been placed on unsteady pressure measurements along the adaptive walls simultaneously with the unsteady pressure measurements on the pitching model. In addition to the experiments corresponding numerical simulations with a RANS-code have been carried out and their results are compared with the experimental data. Of main concern are the influence of laminar-turbulent boundary-layer transition as well as wind-tunnel-wall interference effects on the unsteady results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号