首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Galileo Net Flux Radiometer (NFR) is a Probe instrument designed to measure the vertical profile of upward and net radiation fluxes in five spectral bands spanning the range from solar to far infrared wavelengths. These unique measurements within Jupiter's atmosphere, from which radiative heating and cooling profiles will be derived, will contribute to our understanding of Jovian atmospheric dynamics, to the detection of cloud layers and determination of their opacities, and to the estimation of water vapor abundance. The NFR uses an array of pyroelectric detectors and individual bandpass filters in a sealed detector package. The detector package and optics rotate as a unit to provide chopping between views of upward and downward radiation fluxes. This arrangement makes possible the measurement of small net fluxes in the presence of large ambient fluxes. A microprocessor-controlled electronics package handles instrument operation.  相似文献   

2.
New Horizons: Anticipated Scientific Investigations at the Pluto System   总被引:1,自引:0,他引:1  
The New Horizons spacecraft will achieve a wide range of measurement objectives at the Pluto system, including color and panchromatic maps, 1.25–2.50 micron spectral images for studying surface compositions, and measurements of Pluto’s atmosphere (temperatures, composition, hazes, and the escape rate). Additional measurement objectives include topography, surface temperatures, and the solar wind interaction. The fulfillment of these measurement objectives will broaden our understanding of the Pluto system, such as the origin of the Pluto system, the processes operating on the surface, the volatile transport cycle, and the energetics and chemistry of the atmosphere. The mission, payload, and strawman observing sequences have been designed to achieve the NASA-specified measurement objectives and maximize the science return. The planned observations at the Pluto system will extend our knowledge of other objects formed by giant impact (such as the Earth–moon), other objects formed in the outer solar system (such as comets and other icy dwarf planets), other bodies with surfaces in vapor-pressure equilibrium (such as Triton and Mars), and other bodies with N2:CH4 atmospheres (such as Titan, Triton, and the early Earth).  相似文献   

3.
The Galileo spacecraft was launched by the Space Shuttle Atlantis on October 18, 1989. A two-stage Inertial Upper Stage propelled Galileo out of Earth parking orbit to begin its 6-year interplanetary transfer to Jupiter. Galileo has already received two gravity assists: from Venus on February 10, 1990 and from Earth on December 8, 1990. After a second gravity-assist flyby of Earth on December 8, 1992, Galileo will have achieved the energy necessary to reach Jupiter. Galileo's interplanetary trajectory includes a close flyby of asteroid 951-Gaspra on October 29, 1991, and, depending on propellant availability and other factors, there may be a second asteroid flyby of 243-Ida on August 28, 1993. Upon arrival at Jupiter on December 7, 1995, the Galileo Orbiter will relay data back to Earth from an atmospheric Probe which is released five months earlier. For about 75 min, data is transmitted to the Orbiter from the Probe as it descends on a parachute to a pressure depth of 20–30 bars in the Jovian atmosphere. Shortly after the end of Probe relay, the Orbiter ignites its rocket motor to insert into orbit about Jupiter. The orbital phase of the mission, referred to as the satellite tour, lasts nearly two years, during which time Galileo will complete 10 orbits about Jupiter. On each of these orbits, there will be a close encounter with one of the three outermost Galilean satellites (Europa, Ganymede, and Callisto). The gravity assist from each satellite is designed to target the spacecraft to the next encounter with minimal expenditure of propellant. The nominal mission is scheduled to end in October 1997 when the Orbiter enters Jupiter's magnetotail.List of Acronyms ASI Atmospheric Structure Instrument - EPI Energetic Particles Instrument - HGA High Gain Antenna - IUS Inertial Upper Stage - JOI Jupiter Orbit Insertion - JPL Jet Propulsion Laboratory - LRD Lightning and Radio Emissions Detector - NASA National Aeronautics and Space Administration - NEP Nephelometer - NIMS Near-Infrared Mapping Spectrometer - ODM Orbit Deflection Maneuver - OTM Orbit Trim Maneuver - PJR Perijove Raise Maneuver - PM Propellant Margin - PDT Pacific Daylight Time - PST Pacific Standard Time - RPM Retropropulsion Module - RRA Radio Relay Antenna - SSI Solid State Imaging - TCM Trajectory Correction Maneuver - UTC Universal Time Coordinated - UVS Ultraviolet Spectrometer - VEEGA Venus-Earth-Earth Gravity Assist  相似文献   

4.
The Galileo Near-Infrared Mapping Spectrometer (NIMS) is a combination of imaging and spectroscopic methods. Simultaneous use of these two methods yields a powerful combination, far greater than when used individually. For geological studies of surfaces, it can be used to map morphological features, while simultaneously determining their composition and mineralogy, providing data to investigate the evolution of surface geology. For atmospheres, many of the most interesting phenomena are transitory, with unpredictable locations. With concurrent mapping and spectroscopy, such features can be found and spectroscopically analyzed. In addition, the spatial/compositional aspects of known features can be fully investigated. The NIMS experiment will investigate Jupiter and the Galilean satellites during the two year orbital operation period, commencing December 1995. Prior to that, Galileo will have flown past Venus, the Earth/Moon system (twice), and two asteroids; obtaining scientific measurements for all of these objects.The NIMS instrument covers the spectral range 0.7 to 5.2 , which includes the reflected-sunlight and thermal-radiation regimes for many solar system objects. This spectral region contains diagnostic spectral signatures, arising from molecular vibrational transitions (and some electronic transitions) of both solid and gaseous species. Imaging is performed by a combination of one-dimensional instrument spatial scanning, coupled with orthogonal spacecraft scan-platform motion, yielding two-dimensional images for each of the NIMS wavelengths.The instrument consists of a telescope, with one dimension of spatial scanning, and a diffraction grating spectrometer. Both are passively cooled to low temperatures in order to reduce background photon shot noise. The detectors consist of an array of indium antimonide and silicon photovoltaic diodes, contained within a focal-plane-assembly, and cooled to cryogenic temperatures using a radiative cooler. Spectral and spatial scanning is accomplished by electro-mechanical devices, with motions executed using commandable instrument modes.Particular attention was given to the thermal and contamination aspects of the Galileo spacecraft, both of which could profoundly affect NIMS performance. Various protective measures have been implemented, including shades to protect against thruster firings as well as thermal radiation from the spacecraft.The Near Infrared Mapping Spectrometer (NIMS) Engineering and Science Teams consist of I. Aptaker (Instrument Manager), G. Bailey (Detectors), K. Baines (Science Coordinator), R. Burns (Digital Electronics), R. Carlson (Principal Investigator), E. Carpenter (Structures), K. Curry (Radiative Cooler), G. Danielson (Co-Investigator), T. Encrenaz (Co-Investigator), H. Enmark (Instrument Engineer), F. Fanale (Co-Investigator), M. Gram (Mechanisms), M. Hernandez (NIMS Orbiter Engineering Team), R. Hickok (Support Equipment Software), G. Jenkins (Support Equipment), T. Johnson (Co-Investigator), S. Jones (Optical-Mechanical Assembly), H. Kieffer (Co-Investigator), C. LaBaw (Spacecraft Calibration Targets), R. Lockhart (Instrument Manager), S. Macenka (Optics), J. Mahoney (Instrument Engineer), J. Marino (Instrument Engineer), H. Masursky (Co-Investigator), D. Matson (Co-Investigator), T. McCord (Co-Investigator), K. Mehaffey (Analog Electronics), A. Ocampo (Science Coordinator), G. Root (Instrument System Analysis), R. Salazar (Radiative Cooler and Thermal Design), D. Sevilla (Cover Mechanisms), W. Sleigh (Instrument Engineer), W. Smythe (Co-Investigator and Science Coordinator), L. Soderblom (Co-Investigator), L. Steimle (Optics), R. Steinkraus (Digital Electronics), F. Taylor (Co-Investigator), P. Weissman (Co-Investigator and Science Coordinator), and D. Wilson (Manufacturing Engineer).  相似文献   

5.
The Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) comprises the hardware and accompanying science investigation on the New Horizons spacecraft to measure pick-up ions from Pluto’s outgassing atmosphere. To the extent that Pluto retains its characteristics similar to those of a “heavy comet” as detected in stellar occultations since the early 1980s, these measurements will characterize the neutral atmosphere of Pluto while providing a consistency check on the atmospheric escape rate at the encounter epoch with that deduced from the atmospheric structure at lower altitudes by the ALICE, REX, and SWAP experiments on New Horizons. In addition, PEPSSI will characterize any extended ionosphere and solar wind interaction while also characterizing the energetic particle environment of Pluto, Charon, and their associated system. First proposed for development for the Pluto Express mission in September 1993, what became the PEPSSI instrument went through a number of development stages to meet the requirements of such an instrument for a mission to Pluto while minimizing the required spacecraft resources. The PEPSSI instrument provides for measurements of ions (with compositional information) and electrons from 10 s of keV to ~1 MeV in a 160°×12° fan-shaped beam in six sectors for 1.5 kg and ~2.5 W.  相似文献   

6.
The five THEMIS spacecraft and a dedicated ground-based observatory array will pinpoint when and where substorms occur, thereby providing the observations needed to identify the processes that cause substorms to suddenly release solar wind energy stored within the Earth’s magnetotail. The primary science which drove the mission design enables unprecedented observations relevant to magnetospheric research areas ranging from the foreshock to the Earth’s radiation belts. This paper describes how THEMIS will reach closure on its baseline scientific objectives as a function of mission phase.  相似文献   

7.
Aymeric Spiga  Don Banfield  Nicholas A. Teanby  François Forget  Antoine Lucas  Balthasar Kenda  Jose Antonio Rodriguez Manfredi  Rudolf Widmer-Schnidrig  Naomi Murdoch  Mark T. Lemmon  Raphaël F. Garcia  Léo Martire  Özgür Karatekin  Sébastien Le Maistre  Bart Van Hove  Véronique Dehant  Philippe Lognonné  Nils Mueller  Ralph Lorenz  David Mimoun  Sébastien Rodriguez  Éric Beucler  Ingrid Daubar  Matthew P. Golombek  Tanguy Bertrand  Yasuhiro Nishikawa  Ehouarn Millour  Lucie Rolland  Quentin Brissaud  Taichi Kawamura  Antoine Mocquet  Roland Martin  John Clinton  Éléonore Stutzmann  Tilman Spohn  Suzanne Smrekar  William B. Banerdt 《Space Science Reviews》2018,214(7):109
In November 2018, for the first time a dedicated geophysical station, the InSight lander, will be deployed on the surface of Mars. Along with the two main geophysical packages, the Seismic Experiment for Interior Structure (SEIS) and the Heat-Flow and Physical Properties Package (HP3), the InSight lander holds a highly sensitive pressure sensor (PS) and the Temperature and Winds for InSight (TWINS) instrument, both of which (along with the InSight FluxGate (IFG) Magnetometer) form the Auxiliary Sensor Payload Suite (APSS). Associated with the RADiometer (RAD) instrument which will measure the surface brightness temperature, and the Instrument Deployment Camera (IDC) which will be used to quantify atmospheric opacity, this will make InSight capable to act as a meteorological station at the surface of Mars. While probing the internal structure of Mars is the primary scientific goal of the mission, atmospheric science remains a key science objective for InSight. InSight has the potential to provide a more continuous and higher-frequency record of pressure, air temperature and winds at the surface of Mars than previous in situ missions. In the paper, key results from multiscale meteorological modeling, from Global Climate Models to Large-Eddy Simulations, are described as a reference for future studies based on the InSight measurements during operations. We summarize the capabilities of InSight for atmospheric observations, from profiling during Entry, Descent and Landing to surface measurements (pressure, temperature, winds, angular momentum), and the plans for how InSight’s sensors will be used during operations, as well as possible synergies with orbital observations. In a dedicated section, we describe the seismic impact of atmospheric phenomena (from the point of view of both “noise” to be decorrelated from the seismic signal and “signal” to provide information on atmospheric processes). We discuss in this framework Planetary Boundary Layer turbulence, with a focus on convective vortices and dust devils, gravity waves (with idealized modeling), and large-scale circulations. Our paper also presents possible new, exploratory, studies with the InSight instrumentation: surface layer scaling and exploration of the Monin-Obukhov model, aeolian surface changes and saltation / lifing studies, and monitoring of secular pressure changes. The InSight mission will be instrumental in broadening the knowledge of the Martian atmosphere, with a unique set of measurements from the surface of Mars.  相似文献   

8.
2001 Mars Odyssey Mission Summary   总被引:1,自引:0,他引:1  
Saunders  R.S.  Arvidson  R.E.  Badhwar  G.D.  Boynton  W.V.  Christensen  P.R.  Cucinotta  F.A.  Feldman  W.C.  Gibbs  R.G.  Kloss  C.  Landano  M.R.  Mase  R.A.  McSmith  G.W.  Meyer  M.A.  Mitrofanov  I.G.  Pace  G.D.  Plaut  J.J.  Sidney  W.P.  Spencer  D.A.  Thompson  T.W.  Zeitlin  C.J. 《Space Science Reviews》2004,110(1-2):1-36
The 2001 Mars Odyssey spacecraft, now in orbit at Mars, will observe the Martian surface at infrared and visible wavelengths to determine surface mineralogy and morphology, acquire global gamma ray and neutron observations for a full Martian year, and study the Mars radiation environment from orbit. The science objectives of this mission are to: (1) globally map the elemental composition of the surface, (2) determine the abundance of hydrogen in the shallow subsurface, (3) acquire high spatial and spectral resolution images of the surface mineralogy, (4) provide information on the morphology of the surface, and (5) characterize the Martian near-space radiation environment as related to radiation-induced risk to human explorers. To accomplish these objectives, the 2001 Mars Odyssey science payload includes a Gamma Ray Spectrometer (GRS), a multi-spectral Thermal Emission Imaging System (THEMIS), and a radiation detector, the Martian Radiation Environment Experiment (MARIE). THEMIS and MARIE are mounted on the spacecraft with THEMIS pointed at nadir. GRS is a suite of three instruments: a Gamma Subsystem (GSS), a Neutron Spectrometer (NS) and a High-Energy Neutron Detector (HEND). The HEND and NS instruments are mounted on the spacecraft body while the GSS is on a 6-m boom. Some science data were collected during the cruise and aerobraking phases of the mission before the prime mission started. THEMIS acquired infrared and visible images of the Earth-Moon system and of the southern hemisphere of Mars. MARIE monitored the radiation environment during cruise. The GRS collected calibration data during cruise and aerobraking. Early GRS observations in Mars orbit indicated a hydrogen-rich layer in the upper meter of the subsurface in the Southern Hemisphere. Also, atmospheric densities, scale heights, temperatures, and pressures were observed by spacecraft accelerometers during aerobraking as the spacecraft skimmed the upper portions of the Martian atmosphere. This provided the first in-situ evidence of winter polar warming in the Mars upper atmosphere. The prime mission for 2001 Mars Odyssey began in February 2002 and will continue until August 2004. During this prime mission, the 2001 Mars Odyssey spacecraft will also provide radio relays for the National Aeronautics and Space Administration (NASA) and European landers in early 2004. Science data from 2001 Mars Odyssey instruments will be provided to the science community via NASA’s Planetary Data System (PDS). The first PDS release of Odyssey data was in October 2002; subsequent releases occur every 3 months.  相似文献   

9.
The two classes of outer planets, Gas Giants and Ice Giants, have distinctly different global circulation patterns and internal structure. Ongoing ground-based observations of the Ice Giants provide clues to better understanding and Galileo and Cassini data will generate constraints for Gas Giant modeling. The composition below the cloud levels, the depths to which the winds penetrate and the processes that sustain the zonal winds and weather systems are not understood. Basic questions concerning the structure, composition and atmospheric dynamics that are sustained on the four giants could be answered by a combination of orbiters and probes. Future missions that could answer these questions are not currently under development.  相似文献   

10.
Despite the tremendous progress that has been made since the publication of the Venus II book in 1997, many fundamental questions remain concerning Venus’ history, evolution and current geologic and atmospheric processes. The international science community has taken several approaches to prioritizing these questions, either through formal processes like the Planetary Decadal Survey in the United States and the Cosmic Vision in Europe, or informally through science definition teams utilized by Japan, Russia, and India. These questions are left to future investigators to address through a broad range of research approaches that include Earth-based observations, laboratory and modeling studies that are based on existing data, and new space flight missions. Many of the highest priority questions for Venus can be answered with new measurements acquired by orbiting or in situ missions that use current technologies, and several plausible implementation concepts have been studied and proposed for flight. However, observations needed to address some science questions pose substantial technological challenges, for example, long term survival on the surface of Venus and missions that require surface or controlled aerial mobility. Missions enabled by investments in these technologies will open the door to completely new ways of exploring Venus to provide unique insights into Venus’s past and the processes at work today.  相似文献   

11.
12.
Fuselier  S.A.  Burch  J. L  Lewis  W.S.  Reiff  P.H. 《Space Science Reviews》2000,91(1-2):51-66
The Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) mission uses a suite of imaging instruments to investigate the global response of the magnetosphere to changing solar wind conditions. Detailed science questions that fall under this broad objective include plasma processes that occur on the dayside, flanks, and nightside of the magnetosphere. The IMAGE orbit has been carefully designed to optimize the investigation of these plasma processes as the orbit precesses through the magnetospheric regions. We discuss here the phasing of the IMAGE orbit during the two-year prime mission and the relationship between the orbit characteristics and the critical science objectives of the mission.  相似文献   

13.
The Lightning and Radio Emission Detector (LRD) instrument will be carried by the Galileo Probe into Jupiter's atmosphere. The LRD will verify the existence of lightning in the atmosphere and will determine the details of many of its basic characteristics. The instrument, operated in its magnetospheric mode at distances of about 5, 4, 3, and 2 planetary radii from Jupiter's center, will also measure the radio frequency (RF) noise spectrum in Jupiter's magnetosphere. The LRD instrument is composed of a ferritecore radio frequency antenna ( 100 Hz to 100 kHz) and two photodiodes mounted behind individual fisheye lenses. The output of the RF antenna is analyzed both separately and in coincidence with the optical signals from the photodiodes. The RF antenna provides data both in the frequency domain (with three narrow-band channels, primarily for deducing the physical properties of distant lightning) and in the time domain with a priority scheme (primarily for determining from individual RF waveforms the physical properties of closeby-lightning).  相似文献   

14.
In December, 1995, after a journey of six years, the Galileo probe plunged into Jupiter's atmosphere, becoming the first artificial object to make direct contact with an outer planet. New data supplied by the probe indicated: 1) A new radiation belt around Jupiter ten times stronger than the Van Allen belt around Earth; 2) Jupiter may be much drier than predicted. Its atmosphere contains about as much water as the Sun, but this is subject to instrument calibration uncertainties, and the location of the landing in one of the driest spots on the planet; 3) Jupiter's atmosphere appears to have about three to ten times less lightning than Earth's, while the events are about 10 times stronger, both in terms of size and amount of electrical discharge; and, 4) Jupiter's winds were stronger than expected, increasing with depth, at 330 mph.  相似文献   

15.
The ARTEMIS Mission   总被引:2,自引:0,他引:2  
The Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon??s Interaction with the Sun (ARTEMIS) mission is a spin-off from NASA??s Medium-class Explorer (MIDEX) mission THEMIS, a five identical micro-satellite (hereafter termed ??probe??) constellation in high altitude Earth-orbit since 17 February 2007. By repositioning two of the five THEMIS probes (P1 and P2) in coordinated, lunar equatorial orbits, at distances of ??55?C65 R E geocentric (??1.1?C12 R L selenocentric), ARTEMIS will perform the first systematic, two-point observations of the distant magnetotail, the solar wind, and the lunar space and planetary environment. The primary heliophysics science objectives of the mission are to study from such unprecedented vantage points and inter-probe separations how particles are accelerated at reconnection sites and shocks, and how turbulence develops and evolves in Earth??s magnetotail and in the solar wind. Additionally, the mission will determine the structure, formation, refilling, and downstream evolution of the lunar wake and explore particle acceleration processes within it. ARTEMIS??s orbits and instrumentation will also address key lunar planetary science objectives: the evolution of lunar exospheric and sputtered ions, the origin of electric fields contributing to dust charging and circulation, the structure of the lunar interior as inferred by electromagnetic sounding, and the lunar surface properties as revealed by studies of crustal magnetism. ARTEMIS is synergistic with concurrent NASA missions LRO and LADEE and the anticipated deployment of the International Lunar Network. It is expected to be a key element in the NASA Heliophysics Great Observatory and to play an important role in international plans for lunar exploration.  相似文献   

16.
The Gravity Recovery and Interior Laboratory (GRAIL) is a spacecraft-to-spacecraft tracking mission that was developed to map the structure of the lunar interior by producing a detailed map of the gravity field. The resulting model of the interior will be used to address outstanding questions regarding the Moon’s thermal evolution, and will be applicable more generally to the evolution of all terrestrial planets. Each GRAIL orbiter contains a Lunar Gravity Ranging System instrument that conducts dual-one-way ranging measurements to measure precisely the relative motion between them, which in turn are used to develop the lunar gravity field map. Each orbiter also carries an Education/Public Outreach payload, Moon Knowledge Acquired by Middle-School Students (MoonKAM), in which middle school students target images of the Moon for subsequent classroom analysis. Subsequent to a successful launch on September 10, 2011, the twin GRAIL orbiters embarked on independent trajectories on a 3.5-month-long cruise to the Moon via the EL-1 Lagrange point. The spacecraft were inserted into polar orbits on December 31, 2011 and January 1, 2012. After a succession of 19 maneuvers the two orbiters settled into precision formation to begin science operations in March 1, 2012 with an average altitude of 55 km. The Primary Mission, which consisted of three 27.3-day mapping cycles, was successfully completed in June 2012. The extended mission will permit a second three-month mapping phase at an average altitude of 23 km. This paper provides an overview of the mission: science objectives and measurements, spacecraft and instruments, mission development and design, and data flow and data products.  相似文献   

17.
The historical development of terrestrial atmospheric electricity is described, from its beginnings with the first observations of the potential gradient to the global electric circuit model proposed by C.T.R. Wilson in the early 20th century. The properties of the terrestrial global circuit are summarised. Concepts originally needed to develop the idea of a global circuit are identified as “central tenets”, for example, the importance of radio science in establishing the conducting upper layer. The central tenets are distinguished from additional findings that merely corroborate, or are explained by, the global circuit model. Using this analysis it is possible to specify which observations are preferable for detecting global circuits in extraterrestrial atmospheres. Schumann resonances, the extremely low frequency signals generated by excitation of the surface-ionosphere cavity by electrical discharges, are identified as the most useful single measurement of electrical activity in a planetary atmosphere.  相似文献   

18.
The NASA Radiation Belt Storm Probes (RBSP) mission addresses how populations of high energy charged particles are created, vary, and evolve in space environments, and specifically within Earth’s magnetically trapped radiation belts. RBSP, with a nominal launch date of August 2012, comprises two spacecraft making in situ measurements for at least 2 years in nearly the same highly elliptical, low inclination orbits (1.1×5.8 RE, 10°). The orbits are slightly different so that 1 spacecraft laps the other spacecraft about every 2.5 months, allowing separation of spatial from temporal effects over spatial scales ranging from ~0.1 to 5 RE. The uniquely comprehensive suite of instruments, identical on the two spacecraft, measures all of the particle (electrons, ions, ion composition), fields (E and B), and wave distributions (d E and d B) that are needed to resolve the most critical science questions. Here we summarize the high level science objectives for the RBSP mission, provide historical background on studies of Earth and planetary radiation belts, present examples of the most compelling scientific mysteries of the radiation belts, present the mission design of the RBSP mission that targets these mysteries and objectives, present the observation and measurement requirements for the mission, and introduce the instrumentation that will deliver these measurements. This paper references and is followed by a number of companion papers that describe the details of the RBSP mission, spacecraft, and instruments.  相似文献   

19.
The Galileo Probe Atmosphere Structure Instrument will make in-situ measurements of the temperature and pressure profiles of the atmosphere of Jupiter, starting at about 10-10 bar level, when the Probe enters the upper atmosphere at a velocity of 48 km s-1, and continuing through its parachute descent to the 16 bar level. The data should make possible a number of inferences relative to atmospheric and cloud physical processes, cloud location and internal state, and dynamics of the atmosphere. For example, atmospheric stability should be defined, from which the convective or stratified nature of the atmosphere at levels surveyed should be determined and characterized, as well as the presence of turbulence and/or gravity waves. Because this is a rare opportunity, sensors have been selected and evaluated with great care, making use of prior experience at Mars and Venus, but with an eye to special problems which could arise in the Jupiter environment. The temperature sensors are similar to those used on Pioneer Venus; pressure sensors are similar to those used in the Atmosphere Structure Experiment during descent of the Viking Landers (and by the Meteorology Experiment after landing on the surface); the accelerometers are a miniaturized version of the Viking accelerometers. The microprocessor controlled experiment electronics serve multiple functions, including the sequencing of experiment operation in three modes and performing some on-board data processing and data compression.  相似文献   

20.
The science payload on the Deep Impact mission includes a 1.05–4.8 μm infrared spectrometer with a spectral resolution ranging from R∼200–900. The Deep Impact IR spectrometer was designed to optimize, within engineering and cost constraints, observations of the dust, gas, and nucleus of 9P/Tempel 1. The wavelength range includes absorption and emission features from ices, silicates, organics, and many gases that are known to be, or anticipated to be, present on comets. The expected data will provide measurements at previously unseen spatial resolution before, during, and after our cratering experiment at the comet 9P/Tempel 1. This article explores the unique aspects of the Deep Impact IR spectrometer experiment, presents a range of expectations for spectral data of 9P/Tempel 1, and summarizes the specific science objectives at each phase of the mission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号