首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In semiconductor manufacturing, contamination due to particulates significantly decreases the yield and quality of device fabrication, therefore increasing the cost of production. Dust particle clouds can be found in almost all plasma processing environments including both plasma etching devices and in plasma deposition processes. Dust particles suspended within such plasmas will acquire an electric charge from collisions with electrons and ions in the plasma. If the ratio of inter-particle potential energy to the average kinetic energy is sufficient, the particles will form either a “liquid” structure with short-range ordering or a crystalline structure with long-range ordering. Many experiments have been conducted over the past decade on such colloidal plasmas to discover the character of the systems formed, but more work is needed to fully understand these structures. The preponderance of previous experiments used monodisperse spheres to form complex plasma systems. However, most plasma processing environments contain more arbitrary distributions of particle size. In order to examine in more detail the effects of a size distribution, experiments were carried out in a GEC rf reference cell modified for use as a dusty plasma system. Using two monodisperse particle sizes, experiments were conducted to determine the manner in which phase transitions and other thermodynamic properties depended upon the overall dust grain size distribution. Plasma crystals were formed from different mixtures of 8.89 and 6.50 μm monodisperse particles in argon plasma. With the use of various optical techniques, the pair correlation function was determined at different pressures and powers and then compared to measurements obtained for monodisperse spheres.  相似文献   

2.
Data from ARCS rocket ion beam injection experiments will be primarily discussed in this paper. There are three results from this series of active experiments that are of particular interest in space plasma physics. These are the transverse acceleration of ambient ions in the large beam volume, the scattering of beam ions near the release payload, and the possible acceleration of electrons very close to the plasma generator which produce intense high frequency waves. The ability of 100 ma ion beam injections into the upper E and F regions of the ionosphere to produce these phenomena appear to be related solely to the process by which the plasma release payload and the ion beam are neutralized. Since the electrons in the plasma release do not convect with the plasma ions, the neutralization of both the payload and beam must be accomplished by large field-aligned currents (milliamperes/square meter) which are very unstable to wave growth of various modes. Future work will concentrate on the wave production and wave-particle interactions that produce the plasma/energetic particle effects discussed in this paper and which have direct application to natural phenomena in the upper ionosphere and magnetosphere.  相似文献   

3.
大气重力波与电子密度扰动的耦合   总被引:1,自引:1,他引:0  
本文从相互耦合的大气流体方程和双流体等离子体方程出发, 导出了赤道F区大气重力波和电子密度扰动的耦合色散关系, 据此对两者的共振相互作用作了进一步的理论分析。结果表明, 大气重力波可以通过共振耦合将部分能量转换给带电粒子, 为赤道扩展F提供初始电子密度扰动;在这过程中, 等离子体不稳定性对共振条件和共振耦合有着重要的影响。   相似文献   

4.
表面波等离子体的研究由于实验数据的大量积累而得到快速发展.结合传输线阻抗匹配原理,设计实验对柱形表面波等离子体电离阻抗进行测量;参照金属辐射体中辐射阻抗与损耗阻抗的求解方法,在简化条件下理论计算柱形等离子体的电离阻抗,并与实验数据进行分析比对.研究表明,表面波激发柱形等离子体的电离阻抗对等离子体源产生效率的分析及等离子体参数的诊断有着重要作用.这种新型等离子体源的研究具有非常重要的意义.   相似文献   

5.
The paper presents the results and discussion of VLF wave measurements carried out in the course of two rocket experiments on injection of a dense cesium ion beam into the ionosphere at the heights of 165–240 km. The injection was accompanied by enhancement of the broad-band noise by several orders of magnitude. The wave measurements in the frequency range of 1–11 kHz revealed two pronounced frequencies somewhat exceeding that of the lower-hybrid resonance oscillations in the background plasma and the cesium beam. The oscillations were modulated by frequencies close to the ion-cyclotron frequencies of the background plasma.  相似文献   

6.
常满 《空间科学学报》1982,2(2):118-129
我们利用麦克斯韦方程组和矩方程组,研究了非均匀双流等离子体在电流源作用下,激发波的耦合过程。给出了三模[Pe,Pi,Eo]耦合的普遍方程▽2[P]-[C]·▽[P]+[K2][P]=[D][▽·(ωp2Eo)]。作为一特例,本文首先研究了均匀、有损失(v≠0)双流等离子体中,等离子体波的耦合过程。指出v≠0,即使在均匀等离子体中,也将产生电子等离子体波和离子等离子体波间耦合。但不出现光学模和等离子体模间耦合。   相似文献   

7.
离子漂移计用于探测离子垂直轨道方向的漂移速度.离子漂移计的定标实验包括电子学定标和等离子体环境定标.通过对自行研制的电磁监测试验卫星离子漂移计的电子学定标方法研究,测试得到离子漂移计的噪声、电流测量范围、增益和修正系数以及温漂等电子学定标参数.测试结果表明,离子漂移计的电子学性能优于设计要求,满足科学探测需求.此外,借助于意大利INAF-IAPS等离子体测试实验设备模拟电离层等离子体环境,对离子漂移计的等离子体环境定标问题进行了分析研究.等离子体环境下的测试结果表明,该离子漂移计在特征点处测量结果满足仪器指标要求,能够正确探测离子横向速度,且其相对精度满足设计要求.   相似文献   

8.
Laboratory experiments in which high power, pulsed electromagnetic waves interact with an inhomogeneous plasma indicate that the generated nonlinear plasma phenomena depend on peak incident power and not on pulse length. The electromagnetic waves can penetrate beyond the cutoff and produce large, enhanced electrostatic fields at the critical layer within 100 electron plasma periods. The enhanced electric field pressure can be comparable to the thermal pressure and can accelerate ions and electrons to velocities much greater than their thermal speed. Large density cavities (with δn/n ? 10%) can be created in a time shorter than the usual ion response time because of the accelerated ion dynamics. These laboratory results have been extended to create a new and generalized concept to actively stimulate space plasmas with high power pulses of short duration. A field experiment will be used for the stimulation of auroral ionospheric plasma. The ground-based system is modular, each module consisting of a 2 MW pulsed HF transmitter designed at UCLA and a crossed-dipole antenna element. Incoherent scatter radar and optical diagnostic methods are discussed.  相似文献   

9.
The nonlinear propagation of ion–acoustic (IA) waves in a magneto–rotating plasma is studied by considering the Kappa-Cairns electron distribution. Employing the perturbation scheme, Korteweg–de Vries equation is derived. It is seen that both positive and negative potential solitons can be supported in the present plasma model. The numerical results reveal that the Kappa-Cairns distributed electrons modify features of the electrostatic waves significantly. The effects of non–thermal parameters, plasma rotation frequency, ion temperature, and the wave propagation angle on electrostatic solitary wave structures are also discussed here. It is found that the plasma parameters considerably influence the propagation of IA waves in rotating plasmas. Furthermore, using the bifurcation theory of planar dynamical systems to the K-dV equation, we have presented the existence of solitary and periodic traveling waves. Our study may be helpful to understand the behavior of ion–acoustic wave in the rotating plasma.  相似文献   

10.
For a particular angle of incidence wave, it is possible for a slow Z-mode wave incident on an inhomogeneous plasma slab to be converted into an LO mode wave. But for another wave normal angle of the incident wave, it has been considered impossible, since an evanescence region exists between two mode branches. In this case we expect that the mode conversion takes place through the tunneling effect. We investigate the effect of the spatial scale of the density gradient on the mode conversion efficiency in an inhomogeneous plasma where the mode conversion can occur only by the tunneling effect. We use the computer simulation solving Maxwell’s equations and the motion of a cold electron fluid. By considering the steepness of the density gradient, the simulation results show the efficient mode conversion could be expected even in the case that the mismatch of the refractive indexes prevents the close coupling of plasma waves. Also, we show for these cases the beaming angle does not correspond to Jones’ formula. This effect leads to the angles larger and smaller than the angle estimated by the formula. This type of mode conversion process becomes important in a case where the different plasmas form a discontinuity at their contact boundary.  相似文献   

11.
Beam-plasma interaction effects are studied during the active space experiment with electron and Xe-ion beam injections in an ionospheric plasma. Permanent 40-kHz-modulated electron beam injection occurs simultaneously with a xenon-ion beam injected by the Hall-type plasma thruster operating in a square-pulse mode (100/50 s for a job/pause duration). The unusual behavior of the background charged particle fluxes and wave activity stimulated during the beam-plasma interaction have been registered by the scientific instruments onboard Intercosmos-25 station (IK-25) and Magion-3 subsatellite. The longitudinal and electromagnetic wave instabilities and their mutual relationship are considered in order to explain the observed effects. The excitation of electrostatic waves by the electron injection has been considered for different resonance conditions near the linear stability boundary. Beam-driven electromagnetic instability is responsible for the backward-propagating whistler waves excited via cyclotron resonance. Competition of these two beam instabilities is one of the subjects of the present study.  相似文献   

12.
Electron beam experiments in space that have been done and planned in Japan are reviewed. 200eV, 1mA electron beam is emitted from a satellite and several types of wave excitation such as UHF and ωce have been observed. The satellite potential and the energy spectrum of returning electrons are measured by Langmuir probes and electrostatic energy analyser. In rocket experiments of K-10-11, K-10-12, K-9M-57, K-9M-58, K-9M-61 and K-9M-66, several types of electron guns were used whose power ranges from 1mW to 1KW. The rocket potential was measured by Langmuir probes and floating probes and optical line emission measurement and wave measurements were also done. The rocket potential was not so high as expected from the balance with ionospheric plasma but strongly affected by the plasma production by the emitted electron beam and return electrons.  相似文献   

13.
While experiments carried out in Space with isolated cells have shown that eucaryotic cells are able to sense and respond to the absence of gravity by modifying their reactions, experiments in which more complex processes have been investigated, such as Biological Systems undergoing development under Microgravity, have been surprisingly unaffected by the space environment. This can be considered a curious result since all organisms are evolutionarily adapted to the current level of the gravity force in our planet and should eventually change if this parameter will vary in a permanent manner. In fact, the small effects of the modifications in gravity on development in short term experiments may be equivalent to the difficulties in detecting the involvement of other basic physical processes such as diffusion-controled auto-organizative reactions in currently developing biological systems. An apparent exception to this lack of effect is experiments where brine shrimp dormant gastrulae directly exposed to the space environment accumulate developmental defects as a consequence of cosmic irradiation. In this article we discuss the idea that at a certain stage during the evolutionary emergence of multicellular organisms the cues laid by generic forces such as gravity were involved in the evolutionary organization of these primitive organisms. As evolution proceed, these early mechanisms may have been obscured and/or made redundant by the appearance of new internal, environment-independent biological regulatory mechanisms. On the other hand, behavioral responses that may be important, for example, in setting the life-spans of organisms may still be more readily susceptible to manipulation by external cues as experiments carried out by our group in Space and on the ground with Drosophila melanogaster indicate.  相似文献   

14.
A brief review of early laboratory investigations of bodies in flowing, rarefied plasmas is given together with a discussion of more recent parametric studies carried out at NASA/Marshall Space Flight Center (MSFC), which include the effects of the ion acoustic Mach number and the normalized test body potential. Good agreement is found between the experimental results and theoretical calculations which omit ion thermal motion. The relation between laboratory investigations and the results of satellite-borne measurements is addressed. This relationship has led to an appreciation for the benefits of applying the methods and techniques of laboratory plasma physics to investigations in space, where several limitations inherent to the laboratory can be circumvented. These types of investigations, conducted in Earth orbit, can enhance our understanding of space plasma physics and have direct application to certain types of solar system phenomena.  相似文献   

15.
The bipolar electric field solitary (EFS) structures have been frequently observed in the near Earth plasma regions, such as auroral zone, magnetopause, cusp regions, and magneto-tail. Sometimes these structures are observed as offset bipolar structures. In this paper, the properties of the offset bipolar EFS structures parallel to the magnetic field are studied with an ion fluid model in a cylindrical symmetry by considering electrostatic condition. The model results show that the offset bipolar EFS structures can develop from both ion-acoustic waves and ion cyclotron waves, and propagate along the magnetic field line in the space plasmas if plasma satisfies some conditions. The offset bipolar EFS structures can have both polarities. It will be first negative pulse and then positive pulse if the initial electric field E0 < 0 or reverse in order if E0 > 0. The amplitude of the offset bipolar EFS structures first decreases and then increases with the wave propagation velocity. Some results from our model are consistent with the observations.  相似文献   

16.
The stimulated plasma wave experiment (SPW) has been successfully carried out in the plasmasphere and the magnetosphere along the JIKIKEN (EXOS-B) satellite orbit where the plasma parameters indicate wide variety of the combination of the electron number density, ranging from 1/cc to 104/cc, and the electron cyclotron frequency, ranging from 6 kHz to 200 kHz.The upper hybrid resonances FUHR usually persists for long periods up to 125 msec and the electron cyclotron resonances nFH are stimulated at frequencies with the very high harmonic number n; sometimes, the nFH resonance takes place for n=47.All the features of the resonances including FOn reflect the characteristics of the magnetospheric plasma that contains the energetic and non-Maxwellian components of the particles. The measurement of the plasma resonance contributes to the detection of the local electron density and the magnetic field intensity. The mode of the propagating radio waves is also determined being compared with the observed local plasma resonance frequency Fp.  相似文献   

17.
A REPORT OF GROUND EXPERIMENTS FOR BRAIN FUNCTION IN SPACE   总被引:1,自引:0,他引:1  
Mei Lei 《空间科学学报》1991,11(2):118-123
The brain function is of crucial importance in space adaptation and astronaut performance. According to the theory of nonequiliblium fluctuations a new technology, ET (Elec-troencephalofluctuography [EEFG] Technology), has been developed in our laboratory for space application. Information of different attracters, especially the dominant supra-slow (S) oscillations of the brain can be abstracted from the fluctuating brain waves. Specific Sspectral lines related to neurophysiological and neuro-chemical activities have been identified and charcteristic spatial patterns have been figured out. ETanalysis has been carried out in a series of ground experiments: (1) 20 degrees head lowered suspension experiments in rabbits; (2) 2Gz hypergravity experiments in rabbits; (3) effects of antimotionsickness drugs on rabbits during suspension; (4) clincal observations on patients with brain circulation diseases. Valuable information has been collected in all these experiments, which can hardly be obtained by means of other existing techniques. The potentiality of ETapplication in space research was discussed.   相似文献   

18.
Mass-injection experiments in space plasmas have been conducted for the last twenty years. These injections trace or stain chemical or physical processes, facilitating diagnosis of the natural state of the space plasma; artificially perturb the space plasma away from equilibrium, isolating and controlling selected parameters; simulate natural or artificial states of space plasmas; and utilize the advantages of space as a laboratory to study fundamental plasma physics.We use the Lagopedo ionospheric-depletion experiments to illustrate the special operational aspects of active experiments, including weather, logistics, communications, and real-time diagnostics. The various objectives and techniques of mass-injection experiments are described by example. The CAMEO experiment, a thermite barium release from a satellite over the nightside polar cap, is an excellent example of the use of barium injections to trace upward ion acceleration. The Periquito Dos experiment provided a “snapshot” view of convection electric fields in the dayside polar cusp region. Project Waterhole, an artificial depletion of the topside auroral ionosphere, attempted to modify the equilibrium character of the field-aligned currents and apparently shut off the aurora in a small space-time volume. The Trigger experiment is another example of an active perturbation experiment, wherein the auroral ionospheric transverse conductivities were modified via a cesium injection. The Buaro experiment, a shaped-charged barium injection perpendicular to the local geomagnetic field, resulted in an ion-beam/background-plasma system being displaced from equilibrium, permitting diagnostics of collisionless coupling of the ion beam to the background plasma.  相似文献   

19.
We reported the results of our investigations of wave activity in high-frequency range performed on board CLUSTER spacecraft in the middle-altitude cusp region, around 5 RE during August and September 2002. Our analysis was mainly based on the registration gathered by the WHISPER instrument (Waves of HIgh frequency and Sounder for Probing of Electron density by Relaxation). For a better understanding of the processes of wave-particle interaction and in order to understand the general plasma conditions in the cusp region, we also included in our analysis the data registered by the STAFF (Spatio-Temporal Analysis of Field Fluctuation experiment) instrument and the CIS (Ion Spectrometry experiment) instrument. These observations were carried out during different geomagnetic activity; under quiet conditions and during magnetic storm period. The space plasma is characterised by the ratio of plasma frequency to electron gyrofrequency, in this case, the local plasma frequency was, mainly, a little greater than the electron plasma, but it was also frequently observed that these two characteristic frequencies were not very different from one another. The whistler waves, electron-cyclotron waves, electron-acoustic waves and Langmuir waves have been detected when the spacecraft was crossing the middle-altitude cusp region. We suggested that the majority of those waves were generated by electron beams. For a better understanding the plasma conditions in the low and middle-altitude cusp region the past FREJA wave data results are used to describe typical wave activity detected in the low-altitude cusp region. The aim of this paper is to discuss, on the basis of a few chosen representative examples, the property of typical high wave activity detected in the lower part of cusp region.  相似文献   

20.
Experiments, which somewhat simulate the injection of monoenergetic (several keV) electron beams into the ionosphere, have been performed in the very large (17 m × 26 m) vacuum chamber at Johnson Space Center. Typical operating ranges were: Beam current, I (0–130 mA), beam energy, E (0.5–3 kV), magnetic field, (0.3–2 G), path length, L (10–20 m), and injection pitch angle, α(0–80°). Measurements were carried out in both steady state and pulsed modes. In steady state and for constant V, B, p, L, α, the beam plasma discharge (BPD) is abruptly ignited when the beam current is increased above a critical value; at currents below critical, the beam configuration appears grossly consistent with single particle behavior. If it is assumed that each of the experiment parameters can be varied independently, the critical current required for ignition obeys the empirical relationship at p < 2 × 10?5 torr:
IE3/2B0.7pL
The BPD is characterized by 1) a large increase in the plasma production rate manifested in corresponding increases in the 3914 Å light intensity and plasma density, 2) intense wave emissions in a broad band centered at the plasma frequency and a second band extending from a few kHz up to the electron cyclotron frequency, 3) scattering of the beam in velocity space and 4) radial expansion and pitch angle scattering of the primary beam leading to the disappearance of single particle trajectory features.Measurements of the BPD critical current have been carried out with an ion thruster (Kaufman engine) to provide a background plasma, and these indicate that the presence of an ambient plasma of typical ionospheric densities has little effect on the critical current relation.Measurements of wave amplitudes over a large frequency range show that the amplitude of waves near the plasma and electron cyclotron frequencies are too small to cause or sustain BPD, and that the important instabilities are at much lower frequency (~ 3 kHz in these measurements).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号