首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The “Tyranny of Distance” has had a profound influence on Australian history and reaction to it has been an important factor in determining national scientific and technological goals. Because of its size and geographical remoteness, Australia is one of the countries to have gained substantially from the applications of space technology particularly in the fields of communications, meteorology and remote sensing. Australia is the fifth largest investor in INTELSAT which carries a major fraction of the nation's overseas telecommunications. A domestic satellite system, AUSSAT, is being acquired to improve telecommunications within the country. Australia is heavily dependent on satellite data for routine meteorological forecasting. Data from the Australian Landsat Station are in strong demand, particularly for mineral exploration. In the field of space science, Australia is collaborating with Canada and the United States in feasibility studies for STARLAB, a free-flying UV-optical one metre telescope proposed for launch by the US Space Shuttle beginning in 1989. These scientific and technological programs in which Australia is participating are all dependent upon the space programs of other nations and in describing the status of space science and technology from an Australian perspective some comments will be made on particular aspects of the space programs of the United States and Japan.  相似文献   

2.
The program SJ-10, one of the scientific satellite programs in the Strategic Priority Research Program on Space Science, the Chinese Academy of Sciences, was launched on April 6, 2016. There are totally 19 scientific payloads, a multi-function furnace for 8 material researches and three-dimensional cell cultures for the neural stem cell and the hematopoietic stem cell respectively. The recoverable satellite consists mainly of two capsules:a recoverable capsule was recovered on 18 April 2016, with all payloads of life science, the multi-function furnace and the payload for measurement of Soret Coefficients of Crude Oil (SCCO); and an un-recoverable capsule continued to work in additional 3 days with all other physics payloads. The experiments were operated via teleoperations, and all experimental data were received by the ground station in real time. The data and recoverable samples are analyzed by the experiment teams of the program.   相似文献   

3.
Satellites provide two important characteristics to earth climate studies not available from other, conventional sources: (1) full global coverage, and (2) consistency within the data set. This latter arises from the fact that the satellite data are usually derived from one instrument (or at least from a small number) whereas other sources involve large numbers of separate instruments and hence exhibit a substantial standard deviation. Satellite data, of course, are more subject to bias and must therefore be carefully validated, usually via ground truth.The ISCCP and ISLSCP are examples of the increasing reliance on satellite data for climate studies. In addition to the multispectral images, quantitative products of importance are: (1) atmospheric temperature structure, (2) snow cover, (3) precipitation, (4) vegetation index, (5) maximum/minimum temperature, (6) insolation, and (7) earth radiation balance. The U.S. civil space program is presently committed to its current geostationary (GOES) and polar (NOAA) programs through this decade and to continue both programs into the next decade with spacecraft carrying improved and augmented instrumentation. GOES VISSR Atmospheric Sounder (VAS) data, presently in research status and available only for special observation periods, will become available operationally in 1987 from the current spacecraft series. GOES-Next will provide additional spectral channels, simultaneous imaging, atmospheric soundings, and possibly increased resolution starting in 1990. The NOAA follow-on spacecraft, in the same time frame, is expected to provide additional spectral channels, improved passive microwave radiometry, and possibly increased spatial resolution. The Landsat program is expected to be continued by a commercial operator following the useful life of Landsat-5. All three follow-on programs are presently at various stages of definition and procurement. Final definition may not be completed until late in 1984. However, their status as of the time of this presentation will be reviewed in detail.  相似文献   

4.
The pace of scientific exploration of our solar system provides ever-increasing insights into potentially habitable environments, and associated concerns for their contamination by Earth organisms. Biological and organic-chemical contamination has been extensively considered by the COSPAR Panel on Planetary Protection (PPP) and has resulted in the internationally recognized regulations to which spacefaring nations adhere, and which have been in place for 40 years. The only successful Mars lander missions with system-level “sterilization” were the Viking landers in the 1970s. Since then different cleanliness requirements have been applied to spacecraft based on their destination, mission type, and scientific objectives. The Planetary Protection Subcommittee of the NASA Advisory Council has noted that a strategic Research & Technology Development (R&TD) roadmap would be very beneficial to encourage the timely availability of effective tools and methodologies to implement planetary protection requirements. New research avenues in planetary protection for ambitious future exploration missions can best be served by developing an over-arching program that integrates capability-driven developments with mission-driven implementation efforts. This paper analyzes the current status concerning microbial reduction and cleaning methods, recontamination control and bio-barriers, operational analysis methods, and addresses concepts for human exploration. Crosscutting research and support activities are discussed and a rationale for a Strategic Planetary Protection R&TD Roadmap is outlined. Such a roadmap for planetary protection provides a forum for strategic planning and will help to enable the next phases of solar system exploration.  相似文献   

5.
空间站微重力流体实验设备需求分析   总被引:1,自引:0,他引:1       下载免费PDF全文
对国际空间站和中国科学实验卫星及载人飞行器上开展的微重力流体实验情况进行论述和分析,重点分析了国际空间站(ISS)微重力流体科学实验设备情况.根据中国空间微重力流体物理科学发展需求,结合国际空间站微重力流体科学实验对设备的需求,提出了未来在中国空间站开展微重力流体实验时空间实验设备需要重点考虑和解决的问题,同时提出相关设计建议.   相似文献   

6.
Two special measurements of the energy exchange between earth and space were made in connection with the FGGE. A global monitoring program using wide-field-of-view and scanner detectors from NASA's NIMBUS-7 satellite successfully returned measurements during the entire FGGE. This experiment system also used a black cavity detector to measure the total energy output of the sun to very high precision. A second set of high frequency time and space estimates of the radiation budget were determined from selected geostationary satellite data. Preliminary results from both radiation budget data sets and the solar “constant” measurements will be presented.  相似文献   

7.
In the field of terrestrial climatology the continuous monitoring of the solar irradiance with highest possible accuracy is an important goal. SolACES as a part of the ESA mission SOLAR on the ISS is measuring the short-wavelength solar EUV irradiance from 16–150 nm. This data will be made available to the scientific community to investigate the impact of the solar irradiance variability on the Earth’s climate as well as the thermospheric/ionospheric interactions that are pursued in the TIGER program. Since the successful launch with the shuttle mission STS-122 on February 7th, 2008, SolACES initially recorded the low EUV irradiance during the extended solar activity minimum. Thereafter it has been observing the EUV irradiance during the increasing solar activity with enhanced intensity and changing spectral composition. SolACES consists of three grazing incidence planar grating spectrometers. In addition there are two three-signal ionisation chambers, each with exchangeable band-pass filters to determine the absolute EUV fluxes repeatedly during the mission. One important problem of space-borne instrumentation recording the solar EUV irradiance is the degradation of the spectrometer sensitivity. The two double ionisation chambers of SolACES, which could be re-filled with three different gases for each recording, allow the recalibration of the efficiencies of the three SolACES spectrometers from time to time.  相似文献   

8.
9.
Ion composition of the ionosphere is an important parameter of any ionospheric model. The International Reference Ionosphere-1979 includes a program for the relative ion composition computation. The program was constructed on the basis of the Danilov and Semenov /1/ empirical model, which averaged 42 rocket measurements of the ion composition at middle latitudes below 200 km, on “AEROS” satellite measurements, and on Taylor's data /2/ above that altitude.  相似文献   

10.
Korea is planning a series of lunar space programs in 2020 starting with a lunar orbiter and a lander with a rover. Compared to other countries, Korea has a relatively brief history in space and planetary sciences. With the expected Korean missions on the near-term horizon and the relatively few Korean planetary scientists, Korea Institute of Geoscience and Mineral Resources (KIGAM) has established a new planetary research group focusing on development of prospective lunar instruments, analysis of the publicly available planetary data of the Moon, organizing nationwide planetary workshops, and initiating planetary educational programs with academic institutions. Korea has also initiated its own rocket development program, which could acquire a rocket-launch capability toward the Korean lunar mission. For the prospective Korea’s lunar science program, feasibility studies for some candidate science payloads have been started since 2010 for an orbiter and a lander. The concept design of each candidate instrument has been accomplished in 2012. It is expected that the development of science payloads may start by 2014 as Phase A. Not only developing hardware required for the lunar mission but also educational activities for young students are high priorities for Korea. The new plan of the Korean lunar mission can be successfully accomplished with international cooperative outreach programs in conjunction with internationally accessible planetary data system (PDS). This paper introduces the KIGAM’s international cooperative planetary research and educational programs and also summarizes other nationwide new developments for Korean lunar research projects at Kyung Hee University and Hanyang University.  相似文献   

11.
A “Real-Time” plasma hazard assessment process was developed to support International Space Station (ISS) Program real-time decision-making providing solar array constraint relief information for Extravehicular Activities (EVAs) planning and operations. This process incorporates real-time ionospheric conditions, ISS solar arrays’ orientation, ISS flight attitude, and where the EVA will be performed on the ISS. This assessment requires real-time data that is presently provided by the Floating Potential Measurement Unit (FPMU) which measures the ISS floating potential (FP), along with ionospheric electron number density (Ne) and electron temperature (Te), in order to determine the present ISS environment. Once the present environment conditions are correlated with International Reference Ionosphere (IRI) values, IRI is used to forecast what the environment could become in the event of a severe geomagnetic storm. If the FPMU should fail, the Space Environments team needs another source of data which is utilized to support a short-term forecast for EVAs. The IRI Real-Time Assimilative Mapping (IRTAM) model is an ionospheric model that uses real-time measurements from a large network of digisondes to produce foF2 and hmF2 global maps in 15?min cadence. The Boeing Space Environments team has used the IRI coefficients produced in IRTAM to calculate the Ne along the ISS orbital track. The results of the IRTAM model have been compared to FPMU measurements and show excellent agreement. IRTAM has been identified as the FPMU back-up system that will be used to support the ISS Program if the FPMU should fail.  相似文献   

12.
在90年代,加速发展我国的卫星气象应用是一项具有重大意义和效益的工作。文章对发展卫星气象应用所应采取的技术对策提出了意见,并提出一系列所要解决的科研课题和关键技术问题。  相似文献   

13.
Results of an analysis on impact of space research and technology on developing countries undertaken by the UNISPACE 82 Secretariat on base on national papers submitted by UN member countries to the Conference are reviewed.Experience concerning the implications of a co-operative program on satellite geodesy between the Astronomical Council of the USSR Academy of Sciences and several small countries of Africa, Asia and South America is discussed.  相似文献   

14.
The “Potsdam-4” program system can model satellite orbits with a high accuracy by means of numerical integration. It takes into account gravitational forces of the earth, the moon, the sun, and non-gravitational forces, and realizes an inertial system with a high accuracy. On the basis of this orbit calculation, geodetic and geodynamic parameters can be determined by means of photographic, laser and Doppler observations.  相似文献   

15.
航天测绘是全球基础测绘的主要手段,包括卫星地形测量、卫星重力测量、卫星磁力测量、卫星测高、卫星海洋测量等。航天测绘工程的发展经历了“返回型测绘卫星”工程、“传输型测绘卫星”工程和部分“集成型测绘卫星”工程。首先梳理了国际卫星测量的发展历史和现状,阐述了我国航天测绘各个阶段所发挥的作用,并分析了存在的问题,最后对航天测绘的未来发展提出了思路。  相似文献   

16.
Scientific ballooning as well as the use of balloons for operational projects, deserves and indeed enjoys a high degree of attention in developing countries. Balloon projects are in most cases relatively inexpensive and - besides the scientific merits in their own realm - lend themselves also as “training” projects for larger space programmes. An important aspect of scientific ballooning is the necessity of cooperation, in many cases on an international scale. Examples for these are given and the relevance of balloon projects for developing countries are discussed.  相似文献   

17.
努力提高跟踪精度多年来一直是跟踪技术中不断探讨和需要研究、解决的问题。文章根据国内外跟踪系统的发展,提供了一种卫星精密定轨用的微波精密跟踪系统的初步方案设想。  相似文献   

18.
Biotronics has been involved, under NASA sponsorship, in a wide ranging research and development program for instrumentation used in the monitoring and control of controlled environment agriculture. This program has embraced both chemical monitoring of plant nutrient solutions as well as microbiological monitoring of bacteria and fungi in these same solutions. This paper emphasizes the microbiological monitoring aspects of this program. In contrast to traditional methods of microbiological analysis based on culturing, staining and microscopic observation, the development described here is based on spectroscopic measurements, more specifically spectral fluorometry. The rationale, objectives, analytical methods and new instrumentation employed in the development of an on-line microbiological analyzer (MBA) are presented in some detail. Finally, the signal processing/pattern recognition methods used to evaluate the spectral data and produce estimates of microbial populations are described along with experimental test results to conclude the paper.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号