首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   4篇
航空   6篇
航天   4篇
  2020年   1篇
  2018年   3篇
  2017年   2篇
  2016年   2篇
  2008年   2篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
复燃对液氧煤油发动机尾焰冲击特性影响研究   总被引:2,自引:1,他引:1       下载免费PDF全文
蔡红华  聂万胜  丰松江 《推进技术》2016,37(10):1922-1927
为了研究复燃对液氧煤油发动机尾焰冲击特性的影响,建立了液氧煤油发动机尾焰冲击数值计算模型,并基于模型研究了喷管出口距离平板3m,5m两种工况下复燃对尾焰冲击特性的影响。结果表明:模型考虑了发动机内部燃烧对尾焰冲击特性的影响,计算得到了主射流区的激波结构;复燃增大了尾焰自由射流区和壁面射流区的高温区域,改变了自由射流区和滞止区的形状结构;平板壁面压力随着径向距离增大而逐渐减小,并且3m工况时在1.8m和2.5m处分别出现2.5倍环境压力和1.5倍环境压力的波动,5m工况时在2m处出现1.5~2倍环境压力的波动,在波动之后平板壁面上压力很快降为环境压力,复燃对5m工况的波动较3m工况影响大。  相似文献   
2.
固体火箭发动机尾焰流场特性研究   总被引:6,自引:1,他引:5  
针对某固体火箭发动机,对二维轴对称尾焰流场进行数值模拟,并考虑复燃化学反应和Al2O3颗粒运动的影响。计算得到了尾焰射流的温度场和组分分布图,将计算结果和地面实验结果进行对比,对尾焰流场主要特点进行分析。结果表明复燃化学反应主要发生在燃气空气混合区域,化学反应使复燃区域温度升高约250 K。该计算方法能反映出尾焰复燃流场的主要特点,可为固体火箭发动机尾焰红外特性的计算提供流场基本数据。  相似文献   
3.
液体火箭发动机尾焰对发射平台冲击效应   总被引:2,自引:2,他引:0  
为研究液体火箭发动机尾焰对发射平台的冲击效应特性,建立液体火箭发动机尾焰对发射平台冲击数值计算模型.针对液氧/煤油发动机尾焰对发射平台冲击特性,基于建立模型研究了喷管出口距离平台3,5m工况下推进剂流量和复燃对冲击特性的影响,并分析了影响差异及其产生差异的原因.结果表明:尾焰自由射流区的激波膨胀、压缩距离和壁射流区面积随推进剂流量的增大而增大;考虑复燃化学反应不仅改变了自由射流区和滞止区的形状结构,而且增大了壁射流区的面积和温度;复燃和推进剂流量均是通过影响尾焰结构对冲击特性产生影响,具体影响效果与喷管出口和发射平台间距离有关.   相似文献   
4.
复燃对液体火箭返回阶段底部热环境的影响   总被引:1,自引:1,他引:0  
为了研究垂直起降液体火箭在返回阶段发动机反向喷流及复燃对箭体着陆支腿和底部热环境的影响,建立了尾焰复燃、流场及光谱辐射计算模型。在国内率先对垂直起降液体火箭在返回阶段的箭体底部热环境进行了数值计算,流场计算采用商业软件,复燃反应使用有限速率化学反应模型;采用HITRAN数据库获得喷流气体组分的光谱吸收系数、正反光线踪迹法求解辐射传递方程。利用文献实验结果,对计算进行了验证并考察了复燃对底部热环境的影响。结果表明:复燃反应对包括箭体底面、侧壁面及着陆支腿的对流和辐射热流密度均会明显升高,最高可达80%以上。因此,研究成果适用于液体火箭返回阶段底部精细化热设计,且在设计过程中有必要考虑复燃的影响。  相似文献   
5.
液体火箭发动机尾焰复燃对红外辐射特性的影响   总被引:4,自引:2,他引:2       下载免费PDF全文
任泓帆  朱定强 《推进技术》2018,39(6):1227-1233
为深入研究液体火箭发动机尾焰复燃对红外辐射特性的影响,建立了一个适用于液体火箭尾焰复燃流场和红外辐射特性的计算模型。利用FLUENT软件计算液体火箭尾焰复燃流场,其中复燃反应采用有限速率化学反应模型;采用HITEMP数据库利用逐线积分法(LBL)计算尾焰气体的辐射气体参量;采用反向蒙特卡洛法(BMC)求解辐射传输方程,得到尾焰复燃流场的红外辐射特性。结果表明,复燃反应可大幅度改变尾焰流场特性,进而改变尾焰红外辐射特性。相比于冻结流,反应流流场温度和主要辐射气体含量最大增幅分别可达15.4%及47.5%,主要辐射波段内辐射强度最大增幅可达31.5%。随发动机飞行高度增加,复燃反应所引起的红外辐射强度增量随之降低。  相似文献   
6.
多喷管液体火箭动力系统尾焰流场特性研究   总被引:1,自引:3,他引:1       下载免费PDF全文
为深入研究多喷管液体火箭动力系统尾焰流场特性,以由10台液体火箭发动机组成的多喷管动力系统为模型,采用耦合了Realizable k-ε湍流模型的N-S方程描述尾焰流动过程,考虑复燃反应的影响,并运用压力的隐式算子分割(PISO)算法进行求解,实现了以液氢液氧和液氧煤油为推进剂的两种不同发动机尾焰的混合计算,得到了不同飞行高度下火箭动力系统的尾焰流场结构及其参数分布情况。结果表明:随着飞行高度的升高,尾焰的膨胀角度越来越大,尾焰间的相互作用加强。由于复燃反应及尾焰间相互作用影响,尾焰流场会出现局部高温区域,同时火箭底部及喷管周围会出现旋流,旋流会卷吸尾焰高温燃气,从而会对火箭底部进行烧蚀,需要对其采取相应的热防护措施。  相似文献   
7.
谢建  谢政  杜文正  常正阳 《宇航学报》2018,39(3):339-346
为研究固体火箭点火超压的形成机理和影响因子,以Ariane 5火箭固体助推器1/35缩比模型为研究对象,〖JP+1〗基于可压缩气体三维Navier-Stokes方程建立固体火箭尾焰流场的数学模型。同时,使用有限速率/涡耗散模型表征尾焰复燃反应,采用有限体积法求解火箭尾焰流场控制方程,得到箭体尾部近场的点火超压幅值与分布情况。与试验数据比较,数值结果较好的反映了点火超压的过程特性。进而,采用该数学模型和求解方法,研究了点火超压的影响因子。计算结果表明,尾焰复燃反应对点火超压的影响较小,与无复燃反应的计算结果比较,点火超压的峰值相对变化幅度不大于1.85%,点火超压的波形与分布特性的变化可以忽略;建压速率越快,点火超压峰值越大,且呈非线性比例关系增长;喷管膨胀比主要影响点火超压的波形,对其峰值影响较小。  相似文献   
8.
为研究高含铝推进剂低压固体火箭发动机的尾流场特性,利用流体计算软件Fluent,采用三维雷诺平均N-S方程和标准k-ε湍流模型,对高含铝固体推进剂低压发动机尾流场复燃进行了数值模拟和实验研究。结果表明:低压下高含铝固体推进剂羽流复燃时,温度分布呈现"双峰"的现象,第一温峰是纯气相燃烧形成的,第二温峰是铝粒子燃烧形成的;且铝粒径越小,第二温峰出现的位置离喷管越近,铝粒子温度越高,最高可达1124K;燃烧室压强越高,第二温峰出现的位置离喷管越远。发动机试车试验中也出现"双峰"的羽流温度场,且测得粒子最高温度为1141K,与模拟结果吻合较好。  相似文献   
9.
固体火箭发动机尾喷焰复燃流场计算   总被引:12,自引:0,他引:12  
姜毅  傅德彬 《宇航学报》2008,29(2):615-620
为解决高温、高速、含化学反应的固体火箭发动机复燃流场计算问题,从固体火箭发  相似文献   
10.
采用AUSM(advection upstream splitting method)空间离散格式,探究了常用的3种k-ε湍流模型和2阶、3阶迎风格式对激波捕捉效果的影响。采用标准k-ε双方程模型和2阶迎风格式对不同高度和不同来流马赫数下的偏二甲肼/四氧化二氮(UDMH/NTO)火箭发动机尾焰流场进行喷管-尾焰流场一体化仿真。复燃反应采用12组分18步化学反应模型,喷管入口参数由热力计算给出。结果表明:随着来流马赫数的增加,波节数逐渐降低;随着飞行高度的上升,尾焰影响区域逐渐扩大;复燃反应造成混合区中的O2、N2质量分数大幅下降,而混合区中O、OH、NO质量分数则有所上升。   相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号