首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   2篇
  国内免费   1篇
航空   3篇
航天技术   36篇
航天   5篇
  2022年   2篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2018年   4篇
  2014年   4篇
  2013年   5篇
  2012年   3篇
  2011年   4篇
  2010年   1篇
  2009年   3篇
  2007年   1篇
  2005年   1篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1995年   4篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1987年   1篇
排序方式: 共有44条查询结果,搜索用时 46 毫秒
1.
Existing amplitude scintillation prediction models often perform less satisfactorily when deployed outside the regions where they were formulated. This necessitates the need to evaluate the performance of scintillation models developed in one region using data data from other regions while documenting their relative errors. Due to its variation with elevation angle, frequency, other link parameters and meteorological factors, we employed three years (January 2016 to December 2018) of concurrently measured satellite radio beacons and tropospheric weather parameters to develop a location-based amplitude scintillation prediction model over the Earth-space path of Akure (7.17oN, 5.18oE), South-western Nigeria. The satellite beacon measurement used Tektronix Y400 NetTek Analyzer at 1 s integration time while meteorological parameters, namely; temperature, pressure and relative humidity were measured using Davis Vantage Vue weather station at 1 min integration time. Comparative study of the model’s performance with nine (9) existing scintillation prediction models indicates that the best and worst performing models, in terms of root mean square error (RMSE), are the Statistical Temperature and Refractivity (STN) and direct physical and statistical prediction (DPSP) models with values 11.48 and 51.03 respectively. Also, worst month analysis indicates that April, with respective enhancement and fade values of 0.88 and 0.90 dB for 0.01% exceedance, is the overall worst calendar month for amplitude scintillation.  相似文献   
2.
The occurrence of ionospheric scintillations with S4 ? 0.2 was studied using GPS measurements at Guilin, China (25.29°N, 110.33°E; geomagnetic: 15.04°N, 181.98°E), a station located near the northern crest of the equatorial anomaly. The results are presented for data collected from January 2009 to March 2010. The results show that nighttime amplitude scintillations only took place in February and March of the considered years, while daytime amplitude scintillations occurred in August and December of 2009. Nighttime amplitude scintillations, observed in the south of Guilin, always occurred with phase scintillations, TEC (Total Electron Content) depletions, and ROT (Rate Of change of TEC) fluctuations. However, TEC depletions and ROT fluctuations were weak during daytime amplitude scintillations, and daytime amplitude scintillations always took place simultaneously for most of the GPS satellites which appeared over Guilin in different azimuth directions. Ground-based GPS scintillation/TEC observations recorded at Guilin and signal-to-noise-ratio (SNR) measurements obtained from GPS-COSMIC radio occultation indicate that nighttime and daytime scintillations are very likely caused by ionospheric F region irregularities and sporadic E, respectively. Moreover, strong daytime amplitude scintillations may be associated with the plasma density enhancements in ionospheric E region caused by the Perseid and Geminid meteor shower activities.  相似文献   
3.
Global Navigation Satellite Systems (GNSS), in particular the Global Positioning System (GPS), have been widely used for high accuracy geodetic positioning. The Least Squares functional models related to the GNSS observables have been more extensively studied than the corresponding stochastic models, given that the development of the latter is significantly more complex. As a result, a simplified stochastic model is often used in GNSS positioning, which assumes that all the GNSS observables are statistically independent and of the same quality, i.e. a similar variance is assigned indiscriminately to all of the measurements. However, the definition of the stochastic model may be approached from a more detailed perspective, considering specific effects affecting each observable individually, as for example the effects of ionospheric scintillation. These effects relate to phase and amplitude fluctuations in the satellites signals that occur due to diffraction on electron density irregularities in the ionosphere and are particularly relevant at equatorial and high latitude regions, especially during periods of high solar activity. As a consequence, degraded measurement quality and poorer positioning accuracy may result.  相似文献   
4.
Scintillated GPS phase observations are traditionally characterized by the phase scintillation index, derived from specialized GPS receivers usually tracking at 50 Hz. Geodetic quality GPS receivers, on the other hand, are normally tracking at frequencies up to 1 Hz. However, availability of continuously operating geodetic receivers both in time and geographical location are superior to scintillation receiver’s coverage in many parts of the world. This motivates scintillation studies using regional and global geodetic GPS networks. Previous studies have shown the usefulness of GPS estimated total electron content variations for detecting ionospheric irregularities. In this paper, collocated geodetic and scintillation receivers are employed to compare proxy indices derived from geodetic receivers with the phase scintillation index during quiet and moderately disturbed ionospheric conditions. Sensitivity of the phase scintillation indices at high latitude stations to geomagnetic activity is discussed. Global mapping of ionospheric disturbances using proxy indices from real-time 1 Hz GPS stations are also presented.  相似文献   
5.
The study of amplitude scintillation on GPS radio links is usually done after detrending the time series of the transmitted power so to define scintillations as the chaotic fluctuation around a unitary value. In a sense, the choice of how to detrend the time series is part of the definition of scintillation.  相似文献   
6.
The extensive monitoring networks of Global Navigation Satellite System (GNSS) ionospheric scintillation have been established to continuously log observation data. Further, the amplitude scintillation index and the phase scintillation index, which are derived from scintillation observations, are anticipated to accommodate the accuracy requirement of both the user level and the monitoring station level. However, raw scintillation observations essentially measure superposed waveform impairments of GNSS signals propagating through ionosphere and troposphere. It implies that fluctuations of raw scintillation observations are caused by multiple factors from the entire radio propagation environment. Hence, it is crucial to characterize ionospheric scintillations from GNSS observation data. And the characterization is implemented through extracting fluctuations of raw observations merely induced by ionospheric scintillations. Designed to address this problem by means of Fourier filtering detrending, the present work investigates the influence of varying detrending cutoff frequencies on wavelet statistical energy and wavelet entropy distributions of scintillation data. It consequently derives criteria on the optimum detrending cutoff frequency for three types of raw amplitude scintillation data, which are classified by their wavelet energy distributions. Results of the present work verify that detrending with specific optimum cutoff frequencies rather than the fixed and universally applicable one renders the validity and credibility of characterizing ionospheric scintillations as the part of GNSS observation fluctuations purely induced by ionosphere electron density irregularities whose scale sizes are comparable with or smaller than the Fresnel scale.  相似文献   
7.
磁暴对赤道地区L波段电离层闪烁的影响研究   总被引:1,自引:1,他引:0  
利用赤道地区Vamimo站闪烁数据, 选取两次典型大磁暴时段重点分析, 对比磁暴发生前、发生时以及发生后连续几天电离层幅度闪烁强度和发生率的变化, 引入瑞利elax-elax泰勒不稳定性(Rayleigh-Taylor, R-T不稳定性)线性增长率γ0, 对磁暴影响闪烁的机制进行初步探讨. 结果表明, 磁暴可能触发闪烁发生, 也可能抑制闪烁发生, 这既与观测季节有关, 也与磁暴不同发展阶段的地方时有关. 触发发生于闪烁少发季节磁暴主相所在的午夜至黎明时段, 可能是磁层穿透电离层的东向电场所致; 抑制发生于闪烁多发季节磁暴恢复相所在的午夜前时段, 可能是西向电场作用的结果. 磁暴发生时的电场变化可能是抑制或触发闪烁的主导因素, 但仍需进一步分析研究.   相似文献   
8.
本文讨论了观测频率为232MHz和327MHz时,利用互谱的方法估计太阳风速度的可能性、考虑路径积分效应,结果表明在17°≤ε≤50°范围内,对于几种可能的太阳风速度分布,由互谱所得结果与太阳风速度值差别小于15%.   相似文献   
9.
利用宇宙噪声是均匀的。各向同性的背景电磁辐射的假设,对电子密度涨落空间分布波数谱为负幂律函数的电离层不规则结构,用射线光学方法导出了闪烁功率谱的表示式。与射电星和轨道人造卫星信标的电离层闪烁相比,减少了因相对运动弓队的变量。用数值计算方法研究了电离层不规则结构的结构参量Ly、ly、p、η对功率谱的影响。与实测资料比较,发现电离层吸收事件期间且Riometer记录的闪烁资料中,60%以上相应的不规则结构有Ly>103,η>η0(0.2<η0<0.5).   相似文献   
10.
新乡上空Es层不均匀体的闪烁特性   总被引:1,自引:1,他引:0  
本文介绍新乡1989和1990年夏季ES层不均匀体引起的ETS-II卫星136MHz信号幅度闪烁的观测结果。揭示了闪烁出现与f0Es的关系、闪烁强度和持续时间的概率分布、准周期性闪烁特点以及闪烁谱特征。导出了ES层不均匀体的尺度和漂移速度等物理特性。   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号