首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   0篇
航空   1篇
航天技术   8篇
航天   13篇
  2019年   1篇
  2018年   1篇
  2014年   5篇
  2013年   1篇
  2012年   1篇
  2011年   4篇
  2009年   7篇
  2008年   1篇
  1993年   1篇
排序方式: 共有22条查询结果,搜索用时 31 毫秒
1.
Space graspers are complex systems, composed by robotic arms placed on an orbiting platform. In order to fulfil the manoeuvres’ requirements, it is necessary to properly model all the forces acting on the space robot. A fully nonlinear model is used to describe the dynamics, based on a multibody approach. The model includes the orbital motion, the gravity gradient, the aerodynamic effects, as well as the flexibility of the links. The present paper aims to design, thanks to nonlinear optimization algorithms, a class of manoeuvres that, given the same target to be grasped, are characterized by different mission objectives. The grasping mission can be performed with the objective to minimize the power consumption. Collision avoidance constraints can be also added when the target is equipped with solar panels or other appendices. In some cases, large elastic displacements should be expected, possibly leading to an inaccurate positioning of the end-effector. Therefore, different design strategies can require that the manoeuvre is accomplished with minimum vibrations’ amplitude at the end-effector. Performance of the different strategies is analyzed in terms of control effort, trajectory errors, and flexible response of the manipulator.  相似文献   
2.
The study of amplitude scintillation on GPS radio links is usually done after detrending the time series of the transmitted power so to define scintillations as the chaotic fluctuation around a unitary value. In a sense, the choice of how to detrend the time series is part of the definition of scintillation.  相似文献   
3.
Recently, manifold dynamics has assumed an increasing relevance for analysis and design of low-energy missions, both in the Earth–Moon system and in alternative multibody environments. With regard to lunar missions, exterior and interior transfers, based on the transit through the regions where the collinear libration points L1 and L2 are located, have been studied for a long time and some space missions have already taken advantage of the results of these studies. This paper is focused on the definition and use of a special isomorphic mapping for low-energy mission analysis. A convenient set of cylindrical coordinates is employed to describe the spacecraft dynamics (i.e. position and velocity), in the context of the circular restricted three-body problem, used to model the spacecraft motion in the Earth–Moon system. This isomorphic mapping of trajectories allows the identification and intuitive representation of periodic orbits and of the related invariant manifolds, which correspond to tubes that emanate from the curve associated with the periodic orbit. Heteroclinic connections, i.e. the trajectories that belong to both the stable and the unstable manifolds of two distinct periodic orbits, can be easily detected by means of this representation. This paper illustrates the use of isomorphic mapping for finding (a) periodic orbits, (b) heteroclinic connections between trajectories emanating from two Lyapunov orbits, the first at L1, and the second at L2, and (c) heteroclinic connections between trajectories emanating from the Lyapunov orbit at L1 and from a particular unstable lunar orbit. Heteroclinic trajectories are asymptotic trajectories that travels at zero-propellant cost. In practical situations, a modest delta-v budget is required to perform transfers along the manifolds. This circumstance implies the possibility of performing complex missions, by combining different types of trajectory arcs belonging to the manifolds. This work studies also the possible application of manifold dynamics to defining suitable, convenient end-of-life strategies for spacecraft orbiting the Earth. Seven distinct options are identified, and lead to placing the spacecraft into the final disposal orbit, which is either (a) a lunar capture orbit, (b) a lunar impact trajectory, (c) a stable lunar periodic orbit, or (d) an outer orbit, never approaching the Earth or the Moon. Two remarkable properties that relate the velocity variations with the spacecraft energy are employed for the purpose of identifying the optimal locations, magnitudes, and directions of the velocity impulses needed to perform the seven transfer trajectories. The overall performance of each end-of-life strategy is evaluated in terms of time of flight and propellant budget.  相似文献   
4.
Multistage rockets are commonly employed to place spacecraft and satellites in their operational orbits. Performance evaluation of multistage rockets is aimed at defining the maximum payload mass at orbit injection, for specified structural, propulsive, and aerodynamic data of the launch vehicle. This work proposes a simple method for a fast performance evaluation of multistage rockets. The technique at hand is based on three steps: (i) the flight-path angle at each stage separation is guessed, (ii) the spacecraft velocity is maximized at the first and second stage separation, and (iii) for the last stage the thrust direction is obtained through the particle swarm optimization technique, in conjunction with the use of the Euler–Lagrange equations and the Pontryagin minimum principle. The coast duration at the second stage separation is optimized as well. The method at hand is extremely simple and easy-to-implement, but nevertheless it proves to be capable of yielding near-optimal ascending trajectories for a multistage launch vehicle with realistic structural, propulsive, and aerodynamic characteristics. The solutions found with the technique under consideration can be employed either for a rapid evaluation of the multistage rocket performance or as guesses for more refined optimization algorithms.  相似文献   
5.
Future of Space Astronomy: A global Road Map for the next decades   总被引:1,自引:0,他引:1  
The use of space techniques continues to play a key role in the advance of astrophysics by providing access to the entire electromagnetic spectrum from radio to high energy γ rays. The increasing size, complexity and cost of large space observatories places a growing emphasis on international collaboration. Furthermore, combining existing and future datasets from space and “ground based” observatories is an emerging mode of powerful and relatively inexpensive research to address problems that can only be tackled by the application of large multi-wavelength observations. While the present set of astronomical facilities is impressive and covers the entire electromagnetic spectrum, with complementary space and “ground based” telescopes, the situation in the next 10–20 years is of critical concern. The James Webb Space Telescope (JWST), to be launched not earlier than 2018, is the only approved future major space astronomy mission. Other major highly recommended space astronomy missions, such as the Wide-field Infrared Survey Telescope (WFIRST), the International X-ray Observatory (IXO), Large Interferometer Space Antenna (LISA) and the Space Infrared Telescope for Cosmology and Astrophysics (SPICA), have yet to be approved for development.  相似文献   
6.
This paper describes an interesting and powerful approach to the constrained fuel-optimal control of spacecraft in close relative motion. The proposed approach is well suited for problems under linear dynamic equations, therefore perfectly fitting to the case of spacecraft flying in close relative motion. If the solution of the optimisation is approximated as a polynomial with respect to the time variable, then the problem can be approached with a technique developed in the control engineering community, known as “Sum Of Squares” (SOS), and the constraints can be reduced to bounds on the polynomials. Such a technique allows rewriting polynomial bounding problems in the form of convex optimisation problems, at the cost of a certain amount of conservatism. The principles of the techniques are explained and some application related to spacecraft flying in close relative motion are shown.  相似文献   
7.
Long term human space missions require artificial gravity during some phases of the space flight. In this paper we propose a dual spin system to generate artificial gravity based on a classical rotorcraft configuration where the rotating blade-like module provides a 1g-gravity at the tips. The rotating module is eventually stopped by a fluid ring damper. The dynamics and effectiveness of the damper is analyzed; in particular stability is ensured since a Lyapunov function of the system is found. Optimal damper parameters such as fluid viscosity and ring geometry are determined in order to reduce the despinning time.  相似文献   
8.
Among the configurations of superconducting magnet structures proposed for protecting manned spaceships or manned deep space bases from ionizing radiation, toroidal ones are the most appealing for the efficient use of the magnetic field, being most of the incoming particle directions perpendicular to the induction lines of the field. The parameters of the toroid configuration essentially depend from the shape and volume of the habitat to be protected and the level of protection to be guaranteed. Two options are considered: (1) the magnetic system forming with the habitat a unique complex (compact toroid) to be launched as one piece; (2) the magnetic system to be launched separately from the habitat and assembled around it in space (large toroid).  相似文献   
9.
Medium resolution (2A/px) but high s/n spectra of approximately twenty of the brightest blue stars in the young open cluster NGC 330 in the SMC have been analyzed in order to determine their atmospheric parameters and the evolutionary status. Stellar parameters are determined by comparison with LTE and NLTE model atmosphere calculations and an HR diagram constructed. Luminosities of the sample stars lie in the range 4.0L */L )<5.0 and spectral types between O9 and late-B. The stars in our sample appear to define 4 groups: main-sequence B-stars (B2-B4), B-supergiants (B4) in a blue-loop phase of evolution, a small number of blue stragglers (O9-B0 near main-sequence stars) and a group of luminous giants (B1-B2) which reside in the so-called post main-sequence gap of the HR diagram. Furthermore, we have confirmed spectroscopically the very high incidence of Be stars in this cluster. Finally the almost complete absence of metal lines (at this resolution) is in keeping with the expected very low metallicity of the SMC.  相似文献   
10.
Space vehicles are often characterized by highly flexible appendages, with low natural frequencies which can generate coupling phenomena during orbital maneuvering. The stability and delay margins of the controlled system are deeply affected by the presence of bodies with different elastic properties, assembled to form a complex multibody system. As a consequence, unstable behavior can arise. In this paper the problem is first faced from a numerical point of view, developing accurate multibody mathematical models, as well as relevant navigation and control algorithms. One of the main causes of instability is identified with the unavoidable presence of time delays in the GNC loop. A strategy to compensate for these delays is elaborated and tested using the simulation tool, and finally validated by means of a free floating platform, replicating the flexible spacecraft attitude dynamics (single axis rotation). The platform is equipped with thrusters commanded according to the on–off modulation of the Linear Quadratic Regulator (LQR) control law. The LQR is based on the estimate of the full state vector, i.e. including both rigid – attitude – and elastic variables, that is possible thanks to the on line measurement of the flexible displacements, realized by processing the images acquired by a dedicated camera. The accurate mathematical model of the system and the rigid and elastic measurements enable a prediction of the state, so that the control is evaluated taking the predicted state relevant to a delayed time into account. Both the simulations and the experimental campaign demonstrate that by compensating in this way the time delay, the instability is eliminated, and the maneuver is performed accurately.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号