首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   0篇
  国内免费   1篇
航空   11篇
航天技术   21篇
航天   21篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2018年   2篇
  2017年   1篇
  2014年   2篇
  2013年   1篇
  2012年   4篇
  2011年   8篇
  2010年   1篇
  2009年   2篇
  2008年   4篇
  2007年   5篇
  2006年   6篇
  2005年   2篇
  2004年   3篇
  2003年   2篇
  2002年   1篇
  2000年   2篇
  1995年   1篇
  1987年   1篇
排序方式: 共有53条查询结果,搜索用时 15 毫秒
1.
Galileo卫星导航系统中的BOC调制与接收技术   总被引:2,自引:0,他引:2  
王智  耿相铭 《上海航天》2007,24(6):49-55
介绍了二进制偏移副载波(BOC)调制的原理、性能及其扩频信号相关特性。在分析E5波段Galileo导航信号的接收和捕获技术的基础上,提出了改进的数字化基带处理模型和信号捕获方法。用结构仿真对基带信号处理模型和信号捕获算法进行仿真验证。仿真系统实现了标准E5波段Galileo导航信号的发生、数字化中频接收和基带信号处理,以及信号捕获。结果表明该信号处理方法能消除BOC调制扩频信号自相关函数多峰特性导致的捕获性能下降,可显著提高伪码顺序搜索速度,并大幅缩减跟踪环路的硬件规模。  相似文献   
2.
This paper proposes a real-time kinematic (RTK) model that uses one common reference satellite for the Galileo system with four frequency observations. In the proposed model, the double-differenced (DD) pseudorange and carrier phase biases among the different frequencies are estimated as unknown parameters to recover the integer features of the DD ambiguities among the different frequencies for ambiguity resolution and precise positioning. Analysis results show that the E5a, E5b, and E5 frequencies have virtually the same performance in terms of the positioning accuracy, observation residuals, and ratio values of ambiguity resolution. However, the E1 frequency performs worse than the E5a, E5b, and E5 frequencies. The RTK results for the combination of multiple frequencies are much better than those for a single-frequency observation, the coordinates’ standard deviation is improved about 20–30%, and the ambiguity fix time is improved about 10%.  相似文献   
3.
We present first results of using the European Global Navigation Satellite System (GNSS) Galileo for determining the Total Electron Content (TEC). Furthermore, we describe a calibration technique which can be used to determine GNSS inter-frequency and inter-system biases along with calibrated TEC.  相似文献   
4.
Frequency fluctuations of the Galileo S-band radio signal were recorded nearly continuously during the spacecraft’s solar conjunction from December 1996 to February 1997. A strong propagating disturbance, most probably associated with a coronal mass ejection (CME), was detected on 7 February when the radio ray path proximate point was on the west solar limb at about 54 solar radii from the Sun. The CME passage through the line of sight is characterized by a significant increase in the fluctuation intensity of the recorded frequency and by an increase in the plasma speed from about 234 km s−1 up to about 755 km s−1. These velocity estimates are obtained from a correlation analysis of frequency fluctuations recorded simultaneously at two widely-separated ground stations. The density turbulence power spectrum is found to steepen behind the CME front. The Galileo radio-sounding data are compared with SOHO/LASCO observations of the CME in the corona and with WIND spacecraft data near the Earth’s orbit.  相似文献   
5.
Seven coronal radio-sounding campaigns were carried out during the active lifetime of the Galileo spacecraft in the years 1994–2002. The observational data analyzed in the present work are S-band frequency fluctuation measurements recorded during the solar conjunctions at different phases of solar activity cycle #23, specifically: periods near solar maximum (three conjunctions), near solar minimum (three conjunctions) and during the ascending phase (one conjunction). These data are all applicable to low heliographic latitudes, i.e. to the slow solar wind. The rms frequency fluctuation and power-law index of the frequency fluctuation temporal spectra are determined as a function of heliocentric distance. The turbulence power spectrum tends to be flatter inside ca. 20 solar radii during all phases of the solar cycle. This coincides with a transition in the flow from the inner acceleration region to the outer region of constant velocity. The radial falloff rate and absolute level of the rms frequency fluctuation are essentially invariant over the solar cycle.  相似文献   
6.
In the last 20?years, and in particular in the last decade, the availability of propagation data for GNSS has increased substantially. In this sense, the ionosphere has been sounded with a large number of receivers that provide an enormous amount of ionospheric data. Moreover, the maturity of the models has also been increased in the same period of time. As an example, IGS has ionospheric maps from GNSS data back to 1998, which would allow for the correlation of these data with other quantities relevant for the user and space weather (such as Solar Flux and Kp). These large datasets would account for almost half a billion points to be analyzed. With the advent and explosion of Big Data algorithms to analyze large databases and find correlations with different kinds of data, and the availability of open source code libraries (for example, the TensorFlow libraries from Google that are used in this paper), the possibility of merging these two worlds has been widely opened. In this paper, a proof of concept for a single frequency correction algorithm based in GNSS GIM vTEC and Fully Connected Neural Networks is provided. Different Neural Network architectures have been tested, including shallow (one hidden layer) and deep (up to five hidden layers) Neural Network models. The error in training data of such models ranges from 50% to 1% depending on the architecture used. Moreover, it is shown that by adjusting a Neural Network with data from 2005 to 2009 but tested with data from 2016 to 2017, Neural Network models could be suitable for the forecast of vTEC for single frequency users. The results indicate that this kind of model can be used in combination with the Galileo Signal-in-Space (SiS) NeQuick G parameters. This combination provides a broadcast model with equivalent performances to NeQuick G and better than GPS ICA for the years 2016 and 2017, showing a 3D position Root Mean Squared (RMS) error of approximately 2?m.  相似文献   
7.
The precise point positioning (PPP) technique is widely used in time and frequency applications. Because of the real-time service (RTS) project of the International GNSS Service, we can use the PPP technique for real-time clock comparison and monitoring. As a participant in the RTS, the Centre National d’Etudes Spatiales (CNES) implements the PPPWIZARD (Precise Point Positioning with Integer and Zero-difference Ambiguity Resolution Demonstrator) project to validate carrier phase ambiguity resolution. Unlike the Integer-PPP (IPPP) of the CNES, fixing ambiguities in the post-processing mode, the PPPWIZARD operates in the real-time mode, which is also called real-time IPPP (RT-IPPP). This paper focuses on applying the RT-IPPP for real-time clock comparison and monitoring. We review the principle of real-time clock comparison and monitoring, and introduce the methodology of the RT-IPPP technique. The observations of GPS, GLONASS and Galileo were processed for the experiments. Five processing modes were provided in the experiment to analyze the benefits of ambiguity resolution and multi-GNSS. In the clock comparison experiment, the average reduction ratios of standard deviations with respect to the G PPP mode range from 9.7% to 35.0%. In the clock monitoring experiment, G PPP mode can detect clock jumps whose magnitudes are larger than 0.9 ns. The RT-IPPP technique with GRE PPP AR (G) mode allows for the detection of any clock jumps larger than 0.6 ns. For frequency monitoring, G PPP mode allows detection of frequency changes larger than 1.1 × 10−14. When the RT-IPPP technique is applied, monitoring with GRE PPP AR (G) mode can detect frequency changes larger than 6.1 × 10−15.  相似文献   
8.
Galileo operational orbits are slightly affected by the 3 to 5 tesseral resonance, an effect that can be much more important in the case of disposal orbits. Proceeding by canonical perturbation theory we show that the part of the long-term Hamiltonian corresponding to the non-centralities of the Earth's gravitational potential can be replaced by an intermediary that shows the pendulum dynamics of the 3 to 5 tesseral resonance problem. Inclusion of lunisolar perturbations requires a semi-analytical integration, which is compared with the corresponding results from the well-established Draper Semi-analytical Satellite Theory.  相似文献   
9.
提出了基于IGRF模型的Galileo广播Nequick模型及其参数拟合算法, 解决了Galileo信号仿真中地理场景映射与地磁坐标下的电离层延时修正参数拟合问题. 应用IGRF模型, 可计算出任意给定位置和时间点的地磁参数以及E层、 F1层、F2层的电子密度, 从而计算出Galileo电离层修正参数. 仿真结果表明, 该算法拟合的全球电离层延时与IGS提供的实际观测值基本一致, 仿真精度高于一般的经验电离层模型, 实现了Galileo卫星信号的电离层延时修正参数的精确仿真.   相似文献   
10.
“伽利略”卫星在轨任务控制系统高级规范综述   总被引:1,自引:0,他引:1  
肖鹏 《航天器工程》2012,21(1):97-101
重点描述了"伽利略"卫星在轨任务控制系统高级规范的相关内容,其中包括系统规范和子系统规范,如系统监测和控制子系统、遥测监测子系统、遥控指令子系统和数据归档子系统等;就如何借鉴"伽利略"卫星在轨任务控制系统高级规范,提出了一些开展我国星座卫星在轨任务控制系统设计的策略和方法,如设计方法、实现途径、自动化和安全策略等。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号