首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Global Navigation Satellite System’s (GNSS) positioning calculation is prone to ionospheric errors. Single frequency GNSS users receive ionospheric corrections through broadcast ionospheric models. Therefore, the accuracy of ionospheric models must be validated based on various geographic and geomagnetic conditions. In this work, an attempt is made to validate NeQuick2 electron density (Ne) using multiple sources of space-based and ground-based data at the Arabian Peninsula and for low solar activity conditions. These sources include space-based data from Swarm, DMSP and COSMIC-2 satellite constellations and ground-based data from GNSS receiver and the ionosonde. The period of this study is 1 year from October 2019 to September 2020. Analysis shows that the agreement between NeQuick2 and experimental Ne close to the peak density height depends on seasons and time of the day with the largest errors found in Autumn and during the daytime. NeQuick2 generally overestimates Ne during the daytime. During the early morning and evening hours, Ne estimates seem to be fairly accurate with slight underestimation in Winter and Spring. Estimation of slab thickness by NeQuick2 is found to be close to the values calculated using collocated ionosonde and GNSS receiver.  相似文献   

2.
We developed the methodology for the optimal estimation of global ionospheric coefficients of the current Global Navigation Satellite Systems (GNSSs), including the eight- and ten-parameter Klobuchar-like as well as NeQuick models. The ionospheric coefficients of those correction models are calculated from two sets of globally distributed tracking stations of the International GNSS Services (IGS). Performance of the re-estimated Klobuchar-like and NeQuick coefficients are validated during 2002–2014 over the continental and oceanic areas, respectively. Over the continental areas, GPS TECs derived from 40 ground GPS receivers are selected as reference. The eight-, ten-parameter Klobuchar-like and NeQuick models can mitigate the ionospheric delay by 65.8, 67.3 and 75.0%, respectively. Over the global oceans, the independent TECs derived from Jason-1&2 altimeters are used as reference. The re-estimated ionospheric correction models can mitigate 56.1–66.7% of the delay errors. Compared to the original GPS Ionospheric Correction Algorithm (ICA), performance of those eight-, ten-parameter Klobuchar-like and NeQuick models has improved 3.4, 5.9 and 13.4% during the whole test period, respectively. The methodology developed here takes the advantage of high-quality ionospheric TECs derived from the global network of GNSS receivers. The re-estimated ionospheric coefficients can be used as precise ionospheric products to monitor and assess GNSS broadcast ionospheric parameters and to improve the performance of various single-frequency GNSS applications.  相似文献   

3.
4.
Ionospheric delay is one of the significant error sources for global navigation satellite system (GNSS) positioning. GNSSs broadcast the coefficients of the ionospheric model to correct ionospheric delay for single-frequency users. A modified three-dimensional model (NeQuick G) based on the NeQuick climatological model is adopted for Galileo users. The NeQuick G model uses the effective ionization level (Az) instead of the sunspot number as the driving parameter. In this study, we introduce the ionospheric climate index (ICI) as a new driving parameter for the NeQuick model. In comparison, the ICI-driven NeQuick model has a better performance than the Az-driven NeQuick G model at both low and high latitudes. In addition, only one GNSS station at low latitudes is required to calculate the ICI, which would save maintenance costs and improve the efficiency of updating the broadcast coefficients. This model has potential application value for future upgrades of Galileo’s ionospheric broadcast model.  相似文献   

5.
电离层时延误差是导航定位信号在空间传播路径上的主要误差源之一,因此全面了解GNSS电离层模型的改正精度具有一定现实意义.根据GPS,BDS和Galileo系统所采用的电离层修正模型,利用2014年电离层校正参数,以高精度全球电离层图为基准,评估分析了三大系统电离层时延的改正精度.结果表明:目前GNSS使用的几种电离层修正模型的改正率在65~75%左右;Galileo系统使用的第二版NeQuick模型与第一版NeQuick模型相比在修正精度上并无显著提高;GPS使用的Klobuchar 8参数模型在北半球25°-45°N的中纬度地区精度很高,但是在全球其他区域精度较低,分布性较差,而NeQuick模型全球改正率分布则较为平均且平滑.   相似文献   

6.
Observations of ionospheric vertical total electron content (vTEC) from European ground-based Global Navigation Satellite Systems (GNSS) receivers during the period January 2008–January 2010 are used to investigate, for the first time, vTEC sensitivity to weak geomagnetic disturbances under extreme solar minimum conditions. This study shows a significant number of events for the period in question, all of which exhibited some form of exceptionally large values of vTEC during small-magnitude geomagnetic disturbances. To illustrate our point on the importance of vTEC enhancements during the extreme solar minimum and its relevance for the current GNSS and future Galileo applications, we present in this paper the results associated with two significant events that both occurred in equinoctial months. The 10–12 October 2009 event of anomalous TEC enhancement at two distant mid-latitude locations HERS (0.3 E; 50.9 N) and NICO (33.4 E, 35.1 N) is discussed in the context of strong vTEC variations during the well established ionospheric storm on 11 October 2008. We conclude with a short summary of the new findings and their consequences on ionospheric monitoring and modelling for operational communication and navigation systems.  相似文献   

7.
The ionospheric effect remains one of the main factors limiting the accuracy of Global Navigation Satellite Systems (GNSS) including Galileo. For single frequency users, this contribution to the error budget will be mitigated by an algorithm based on the NeQuick global ionospheric model. This quick-run empirical model provides flexible solutions for combining ionospheric information obtained from various sources, from GNSS to ionosondes and topside sounders. Hence it constitutes an interesting simulation tool not only serving Galileo needs for mitigation of the ionospheric effect but also widening the use of new data.  相似文献   

8.
A study of the performance of the NeQuick model and the Klobuchar model for GNSS single frequency range delay correction on a global scale was done using data for moderate solar activity. In this study NeQuick was used in the way intended for Galileo. This study is to assess the performance of the two models at each ionospheric geographic region during moderate solar activity as previously published studies were concentrated only on high solar activity. The results obtained showed that NeQuick outperformed Klobuchar for the whole year at the three geographical regions of the ionosphere. In terms of monthly root mean square of mismodeling, NeQuick outperformed Klobuchar by 15 TECU or more at low-latitudes, 5 TEC or more at mid-latitudes, and 1 TECU or more at high-latitudes.  相似文献   

9.
Ionospheric estimation is becoming more and more important for the new multifrequency positioning algorithms, since they can help to improve greatly the convergence time for acquiring a good positioning error. In this paper, an open source tool to estimate precise ionospheric estimates is presented, namely ESA UGI (Unified-GNSS-Ionosphere). The presentation is done jointly with a methodology to test ionospheric model using a modified NeQuick to generate synthetic data. The results with different option of the ESA UGI shows that it has a good performance below 1 TECU (Total Electron Content Units) in vTEC (vertical Total Electron Content) RMS (Root Mean Squared) for European networks, around 2 TECU in a well-covered African region and between 1 and 6 TECU globally with this synthetic data. It shows as well the capability of changing between different ionosphere models (voxel, multilayer and spherical harmonics) and configuration options. Finally, a test with uncombined PPP actual data is presented showing that instantaneous convergence below 30 cm in 3D RMS position error are achievable in a well sounded area in Europe.  相似文献   

10.
SIRGAS (Geocentric Reference Frame for the Americas) is an international enterprise of the geodetic community that aims to realize the Terrestrial Reference Frame in the America’s countries. In order to fulfill this commitment, SIRGAS manages a network of continuously operational GNSS receivers totalling around one hundred sites in the Caribbean, Central, and South American region. Although the network was not planed for ionospheric studies, its potential to be used for such a purpose was recently recognized and SIRGAS started a pilot experiment devoted to establish a regular service for computing and releasing regional vertical TEC (vTEC) maps based on GNSS data. Since July, 2005, the GESA (Geodesia Espacial y Aeronomía) laboratory belonging to the Facultad de Ciencias Astronómicas y Geofísicas of the Universidad Nacional de La Plata computes hourly maps of vertical Total Electron Content (vTEC) in the framework of the SIRGAS pilot experiment. These maps exploit all the GNSS data available in the South American region and are computed with the LPIM (La Plata Ionospheric Model). LPIM implements a de-biasing procedure that improves data calibration in relation to other procedures commonly used for such purposes. After calibration, slant TEC measurements are converted to vertical and mapped using local-time and modip latitude. The use of modip latitude smoothed the spatial variability of vTEC, especially in the South American low latitude region and hence allows for a better vTEC interpolation. This contribution summarizes the results obtained by GESA in the framework of the SIRGAS pilot experiment.  相似文献   

11.
The modelling of the total electron content (TEC) plays an important role in global navigation satellite systems (GNSS) accuracy, especially for single-frequency receivers, the most common ones constituting the mass market. For the latter and in the framework of Galileo, the NeQuick model has been chosen for correcting the ionospheric error contribution and will be integrated into a global algorithm providing the users with daily updated information.  相似文献   

12.
A space-based augmentation system (SBAS) provides real-time correction data for global navigation satellite system (GNSS) users near ground. In order to use the SBAS ionosphere correction for low Earth orbit (LEO) satellites, the correction should be scaled down for the LEO altitude. This scale factor varies with ionosphere distribution and it is hard to determine the value at LEO in real time. We propose a real-time scale factor determination method by using Galileo GNSS’s NeQuick G model. A LEO satellite GPS data and SBAS data received on ground were used to evaluate the performance of the NeQuick G derived variable scale factor. The NeQuick G derived scale factor shows a significant accuracy improvement over NeQuick G model or pre-determined constant scale factor. It improves a vertical positioning accuracy of the LEO satellite. The error mean reductions of the vertical positioning over NeQuick G and the constant scale factor are 31.5% and 11.7%, respectively.  相似文献   

13.
PPP (Precise Point Positioning) is a GNSS (Global Navigation Satellite Systems) positioning method that requires SSR (State Space Representation) corrections in order to provide solutions with an accuracy of centimetric level. The so-called RT-PPP (Real-time PPP) is possible thanks to real-time precise SSR products, for orbits and clocks, provided by IGS (International GNSS Service) and its associate analysis centers such as CNES (Centre National d'Etudes Spatiales). CNES SSR products also enable RT-PPP with integer ambiguity resolution. In GNSS related literature, PPP with ambiguity resolution (PPP-AR) in real-time is often referred as PPP-RTK (PPP – Real Time Kinematic). PPP-WIZARD (PPP - With Integer and Zero-difference Ambiguity Resolution Demonstrator) is a software that is made available by CNES. This software is capable of performing PPP-RTK. It estimates slant ionospheric delays and other GNSS positioning parameters. Since ionospheric effects are spatially correlated by GNSS data from active networks, it is possible to model and provide ionospheric delays for any position in the network coverage area. The prior knowledge ionospheric delays can reduce positioning convergence for PPP-RTK users. Real-time ionospheric models could benefit from highly precise ionospheric delays estimated in PPP-AR. In this study, we demonstrate that ionospheric delays obtained throughout PPP-AR estimation are actu ally ionospheric observables. Ionospheric observables are biased by an order of few meters caused by the receiver hardware biases. These biases prohibit the use of PPP-WIZARD ionospheric delays to produce ionospheric models. Receiver biases correction is essential to provide ionospheric delays while using PPP-AR based ionospheric observables. In this contribution, a method was implemented to estimate and mitigate receiver hardware biases influence on slant ionospheric observables from PPP-AR. In order to assess the proposed approach, PPP-AR data from 12 GNSS stations were processed over a two-month period (March and April 2018). A comparison between IGS ionospheric products and PPP-AR based ionospheric observables corrected for receiver biases, resulted in a mean of differences of −39 cm and 51 cm standard deviation. The results are consistent with the accuracy of the IGS ionospheric products, 2–8 TECU, considering that 1 TECU is ~16 cm in L1. In another analysis, a comparison of ionospheric delays from 5 pairs of short baselines GNSS stations found an agreement of 0.001 m in mean differences with 22 cm standard deviation after receiver biases were corrected. Therefore, the proposed solution is promising and could produce high quality (1–2 TECU) slant ionospheric delays. This product can be used in a large variety of modeling approaches, since ionospheric delays after correction are unbiased. These results indicate that the proposed strategy is promising, and could benefit applications that require accuracy of 1–2 TECU (~16–32 cm in L1).  相似文献   

14.
Precise positioning based on Global Navigation Satellite System (GNSS) technique requires high accuracy ionospheric total electron content (TEC) correction models to account for the ionospheric path delay errors. We present an adjusted Spherical Harmonics Adding KrigING method (SHAKING) approach for regional ionospheric vertical TEC (VTEC) modeling in real time. In the proposed SHAKING method, the VTEC information over the sparse observation data area is extrapolated by the Adjusted Spherical Harmonic (ASH) function, and the boundary distortion in regional VTEC modeling is corrected by the stochastic VTEC estimated using Kriging interpolation. Using real-time GPS, GLONASS and BDS-2/3 data streams of the Crust Movement Observation Network of China (CMONOC), the SHAKING-based regional ionospheric VTEC maps are re-constructed over China and its boundary regions. Compared to GNSS VTECs derived from the independent stations, the quality of SHAKING solution improves by 13–31% and 6–33% with respect to the ASH-only solution during high and low geomagnetic periods, respectively. Compared to the inverse distance weighting (IDW) generated result, significant quality improved of SHAKING-based VTEC maps is also observed, especially over the edge areas with an improvement of 60–80%. Overall, the proposed SHAKING method exhibits notable advantage over the existing regional VTEC modeling techniques, which can be used for regional TEC modeling and associated high-precision positioning applications.  相似文献   

15.
This paper reports the ionospheric anomalies observed during strong local earthquakes (M?5.0) which occurred mostly in and around Uzbekistan in seismically active zones, during years 2006 to 2009 within approximately 1000 km distance from the observing GPS stations located in Tashkent and Kitab, Uzbekistan. The solar and geomagnetic conditions were quiet during occurrence of the selected strong earthquakes. We produce Total Electron Content (TEC) time series over both sites and apply them to detect anomalous TEC signals preceding or accompanying the local earthquakes. The results show anomalous increase or decrease of TEC before or during the earthquakes. In general the anomalies occurred 1–7 days before the earthquakes as ionospheric electromagnetic precursors. To identify the anomalous values of TEC we calculated differential TEC (dTEC). dTEC is obtained by subtracting monthly averaged diurnal vTEC from the values of observed vTEC at each epoch. This procedure removes normal diurnal variations of vTEC. The present results are in good agreement with the previous observations on ionospheric earthquake precursors reported by various researchers.  相似文献   

16.
We introduce a new global ionospheric modeling software—IonoGim, using ground-based GNSS data, the altimetry satellite and LEO (Low Earth Orbit) occultation data to establish the global ionospheric model. The software is programmed by C++ with fast computing speed and highly automatic degree, it is especially suitable for automatic ionosphere modeling. The global ionospheric model and DCBs obtained from IonoGim were compared with the CODE (Center for Orbit Determination in Europe) to verify its accuracy and reliability. The results show that IonoGim and CODE have good agreement with small difference, indicating that IonoGim owns high accuracy and reliability, and can be fully applicable for high-precision ionospheric research. In addition, through comparison between only using ground-based GNSS observations and multi-source data model, it can be demonstrated that the space-based ionospheric data effectively improve the model precision in marine areas where the ground-based GNSS tracking station lacks.  相似文献   

17.
It is important to use models developed specifically for the equatorial ionospheric estimation for real-time applications, particularly in Satellite Navigation. This work demonstrates a methodology for improved predictions of VTEC in real time using the model developed for the equatorial ionosphere by the authors. This work has been done using TEC data of the low solar activity period of 2005 obtained using dual frequency GPS receivers installed under the GAGAN project of ISRO. For the purpose, the model is first used in conjunction with Kriging technique. Improvement in accuracy is observed when compared with the estimations from the model alone using the measurements as true reference. Further improvement is obtained by Bayesian combination of these estimates with independent Neural Network based predictions. Statistical performance of improvement is provided. An improvement of ∼1 m in confidence level of estimation of VTEC is obtained.  相似文献   

18.
By using the data of GNSS (Global Navigation Satellite System) observation from Crustal Movement Observation Network of China (CMONOC), ionospheric electron density (IED) distributions reconstructed by using computerized ionospheric tomography (CIT) technique are used to investigate the ionospheric storm effects over Wuhan region during 17 March and 22 June 2015 geomagnetic storm periods. F-region critical frequency (foF2) at Wuhan ionosonde station shows an obvious decrease during recovery phase of the St. Patrick’s Day geomagnetic storm. Moreover, tomographic results present that the decrease in electron density begins at 12:00 UT on 17 March during the storm main phase. Also, foF2 shows a long-lasting negative storm effect during the recovery phase of the 22 June 2015 geomagnetic storm. Electron density chromatography presents the evident decrease during the storm day in accordance with the ionosonde observation. These ionospheric negative storm effects are probably associated with changes of chemical composition, PPEF and DDEF from high latitudes.  相似文献   

19.
一种用于电离层TEC监测的GNSS信号载波跟踪算法   总被引:1,自引:1,他引:0       下载免费PDF全文
全球卫星导航系统(GNSS)是电离层TEC监测中应用最普遍的手段. 目前方法通常是在传统导航用途的GNSS接收机输出的原始观测量基础上,经过数据后处理得到电离层TEC信息,其GNSS信号的跟踪处理算法依然采用GNSS导航接收机的算法. 针对GNSS系统用于电离层TEC监测的特殊性,提出一种称为GNSS双频信号和差联合跟踪的新算法,与传统方法相比,该算法直接跟踪电离层TEC的变化,可以提高电离层TEC跟踪的灵敏度和TEC的观测精度,改善电离层TEC监测性能.   相似文献   

20.
针对如何利用GNSS(Global Navigation Satellite System)数据进行电离层扰动监测的问题,提出了一种基于GNSS数据表征全球电离层扰动的方法.利用大约400个GNSS地面站点的观测数据,计算总电子含量(Total Electron Content,TEC)变化率的标准差——ROTI(Ra...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号