首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This paper presents traveling ionospheric disturbances (TIDs) observations from GPS measurements over the South African region during the geomagnetically disturbed period of 29–31 October 2003. Two receiver arrays, which were along two distinct longitudinal sectors of about 18°-20° and 27°-28° were used in order to investigate the amplitude, periods and virtual propagation characteristics of the storm induced ionospheric disturbances. The study revealed a large sudden TEC increase on 28 October 2003, the day before the first of the two major storms studied here, that was recorded simultaneously by all the receivers used. This pre-storm enhancement was linked to an X-class solar flare, auroral/magnetospheric activities and vertical plasma drift, based on the behaviour of the geomagnetic storm and auroral indices as well as strong equatorial electrojet. Diurnal trends of the TEC and foF2 measurements revealed that the geomagnetic storm caused a negative ionospheric storm; these parameters were depleted between 29 and 31 October 2003. Large scale traveling ionospheric disturbances were observed on the days of the geomagnetic storms (29 and 31 October 2003), using line-of-sight vertical TEC (vTEC) measurements from individual satellites. Amplitude and dominant periods of these structures varied between 0.08–2.16 TECU, and 1.07–2.13 h respectively. The wave structures were observed to propagate towards the equator with velocities between 587.04 and 1635.09 m/s.  相似文献   

2.
This paper investigates the capacity of the latest version of the International Reference Ionosphere (IRI-2012) model in predicting the vertical Total Electron Content (vTEC) over Ethiopian regions during solar minimum (2009) and solar maximum (2013) phases. This has been carried out by comparing the IRI-2012 modeled and experimental vTEC inferred from eight ground based dual frequency GPS (Global Positioning System) receivers installed recently at different regions of the country. In this work, the diurnal, monthly and seasonal variation in the measured vTEC have been analyzed and compared with the IRI-2012 modeled vTEC. During the solar minimum phase, the lowest and highest diurnal peak of the experimental vTEC are observed in July and October, respectively. In general, the diurnal variability of vTEC has shown minimum values around 0300 UT (0600 LT) and maximum values between around 1000 and 1300 UT (1300 and 1600 LT) during both solar activity phases. Moreover, the maximum and minimum monthly and seasonal mean hourly vTEC values are observed in October and July and in the March equinox and June solstice, respectively. It is also shown that the IRI-2012-model better predicts the diurnal vTEC in the time interval of about 0000–0300 UT (0300–0600 LT) during the solar minimum phase. However, the model generally overestimates the diurnal vTEC except in the time interval of about 0900–1500 UT (1200–1800 LT) during the solar maximum phase. The overall result of this work shows that the diurnal vTEC prediction performance of the model is generally better during the solar minimum phase than during solar maximum phase. Regarding the monthly and seasonal prediction capacity of the model, there is a good agreement between the modeled and measured monthly and seasonal mean hourly vTEC values in January and December solstice, respectively. Another result of the work depicts that unlike the GPS–TEC the IRI-2012 TEC does not respond to the effect resulted from geomagnetic storms.  相似文献   

3.
This paper presents the vertical total electron content vTEC variations for three African stations, located at mid-low and equatorial latitudes, and operating since more than 10 years. The vTEC of the middle latitude GPS station in Alexandria, Egypt (31.2167°N; 29.9667°E, geographic) is compared to the vTEC of two others GPS stations: the first one in Rabat/Morocco (33.9981°N; 353.1457°E, geographic), and the second in Libreville/Gabon (0.3539°N; 9.6721°E, geographic). Our results discussed the diurnal, seasonal, and solar cycle dependences of vTEC at the local ionospheric conditions, during different phases of solar cycle in the light of the classification of Legrand and Simon. The vTEC over Alexandria exhibits the well-known equinoctial asymmetry which changes with the phases of the solar cycle; the spring vTEC is larger than that of autumn during the maximum, decreasing and minimum phases of solar cycle 23. During the increasing phase of solar cycle 24, it is the contrary. The diurnal variation of the vTEC presents multiple maxima during the equinox from 2005 to 2008 and during the summer solstice from 2006 to 2012. A nighttime vTEC enhancement and winter anomaly are also observed. During the deep solar minimum (2006–2009) the diurnal variation of the vTEC observed over Alexandria is similar to the diurnal variation observed during quiet magnetic period at equatorial latitudes. We observed also that the amplitude of vTEC at Libreville is larger than the amplitude of vTEC observed at Alexandria and Rabat, indeed Libreville is near the southern crest of the Equatorial Ionization anomaly. Finally, the correlation coefficient between vTEC and the sunspot number Rz is high and changes with solar cycle phases.  相似文献   

4.
In this paper, the peculiarities of ionospheric response to geomagnetic disturbances observed at the decay and minimum of solar activity (SA) in the period 2004–2007 are investigated with respect to different geomagnetic conditions. Data from ionospheric stations and results of total electron content (TEC) measurements made at the network of GPS ground-based receivers located within the latitude–longitude sector (20–70°N, 90–160°Е) are used in this study. Three groups of anomalous ionospheric response to geomagnetic disturbances have been observed during low solar activity. At daytime, the large-scale traveling ionospheric disturbances (LSTIDs) could generally be related to the main phase of magnetic storm. Quasi-two-days wavelike disturbances (WLDs) have been also observed in the main phase independent of the geomagnetic storm intensity. Sharp electron density oscillations of short duration (OSD) occurred in the response to the onset of both main and recovery phases of the magnetic storm in the daytime at middle latitudes. A numerical model for ionosphere–plasmasphere coupling was used to interpret the occurrence of LS TIDs. Results showed that the LSTIDs might be associated with the unexpected lifting of F2 layer to the region with the lower recombination rate by reinforced meridional winds that produces the increase of the electron density in the F2 layer maximum.  相似文献   

5.
Analysis of a long-time series of hourly median characteristics of the ionospheric plasma at two mid-latitude locations in the Northern and Southern hemisphere, Juliusruh (54.6N; 13.4E) and Hobart (42.9S; 147.3E), reveals patterns of their synchronous and independent variability. We studied timelines of GPS vTEC, ionogram-derived F2-layer peak electron density NmF2, ionospheric equivalent slab thickness τ, and their ratios at two locations during the complete 23rd solar cycle and its following period of the extremely low solar activity in 2008–2009. This study has also involved the comparative analysis of the observed data versus the model predictions by IRI-2012. During the high solar activity in 2000–2002, seasonal variations show a complicated cross-hemisphere behavior influenced by the winter and semi-annual anomalies, with the largest noon-time values of TEC and NmF2 observed around equinoxes. Strength of the winter anomaly in NmF2 was significantly greater at Juliusruh in comparison with Hobart. The winter anomaly in GPS vTEC values was much weaker than in NmF2 for the Northern hemisphere mid-latitudes and was entirely absent at the Southern hemisphere. Cross-hemisphere analysis of the equivalent slab thickness shows its clear seasonal dependence for all levels of solar activity: the day-time maximum τmax is observed during local summer, whereas the day-time minimum τmin is observed during local winter. The night-time values of τ were higher compared to the day-time values during the winter and equinox seasons. Comparative model-data study shows rather good IRI performance of the day-time NmF2 for mid-latitudes of both hemispheres and rather noticeable overestimations for the mid-night NmF2 values during high solar activity. Analysis of IRI vTEC demonstrates the model limitations, related with the absence of the plasmaspheric part, and actual demand in a reliable and standard ionosphere–plasmasphere model for analysis of GPS vTEC.  相似文献   

6.
The ionospheric variability at equatorial and low latitude region is known to be extreme as compared to mid latitude region. In this study the ionospheric total electron content (TEC), is derived by analyzing dual frequency Global Positioning System (GPS) data recorded at two stations separated by 325 km near the Indian equatorial anomaly region, Varanasi (Geog latitude 25°, 16/ N, longitude 82°, 59/ E, Geomagnetic latitude 16°, 08/ N) and Kanpur (Geog latitude 26°, 18/ N, longitude 80°, 12/ E, Geomagnetic latitude 17°, 18/ N). Specifically, we studied monthly, seasonal and annual variations as well as solar and geomagnetic effects on the equatorial ionospheric anomaly (EIA) during the descending phase of solar activity from 2005 to 2009. It is found that the maximum TEC (EIA) near equatorial anomaly crest yield their maximum values during the equinox months and their minimum values during the summer. Using monthly averaged peak magnitude of TEC, a clear semi-annual variation is seen with two maxima occurring in both spring and autumn. Results also showed the presence of winter anomaly or seasonal anomaly in the EIA crest throughout the period 2005–2009 only except during the deep solar minimum year 2007–2008. The correlation analysis indicate that the variation of EIA crest is more affected by solar activity compared to geomagnetic activity with maximum dependence on the solar EUV flux, which is attributed to direct link of EUV flux on the formation of ionosphere and main agent of the ionization. The statistical mean occurrence of EIA crest in TEC during the year from 2005 to 2009 is found to around 12:54 LT hour and at 21.12° N geographic latitude. The crest of EIA shifts towards lower latitudes and the rate of shift of the crest latitude during this period is found to be 0.87° N/per year. The comparison between IRI models with observation during this period has been made and comparison is poor with increasing solar activity with maximum difference during the year 2005.  相似文献   

7.
负相电离层骚扰及其日地相关关系   总被引:1,自引:0,他引:1  
本文对1965—1982年, 我国境内的满州里(49°35′N, 117°27′E), 北京(40°00′N, 116°18′E), 重庆(29°30′N, 106°25′E), 广州(23°09′N, 113°21′E)和海口(20°00′N, 110°20′E)等五个电离层观测站的负相电离层骚扰形态, 用世界资料中心A出版的太阳地球物理资料中的太阳耀斑、射电、地磁和北京地磁台的地磁观测报告等资料与电离层骚扰的相关关系进行了分析研究.所得到的电离层骚扰形态变化规律和日地相关规律的结果对预报电离层骚扰是有益的.   相似文献   

8.
This paper reports the ionospheric anomalies observed during strong local earthquakes (M?5.0) which occurred mostly in and around Uzbekistan in seismically active zones, during years 2006 to 2009 within approximately 1000 km distance from the observing GPS stations located in Tashkent and Kitab, Uzbekistan. The solar and geomagnetic conditions were quiet during occurrence of the selected strong earthquakes. We produce Total Electron Content (TEC) time series over both sites and apply them to detect anomalous TEC signals preceding or accompanying the local earthquakes. The results show anomalous increase or decrease of TEC before or during the earthquakes. In general the anomalies occurred 1–7 days before the earthquakes as ionospheric electromagnetic precursors. To identify the anomalous values of TEC we calculated differential TEC (dTEC). dTEC is obtained by subtracting monthly averaged diurnal vTEC from the values of observed vTEC at each epoch. This procedure removes normal diurnal variations of vTEC. The present results are in good agreement with the previous observations on ionospheric earthquake precursors reported by various researchers.  相似文献   

9.
We present an analysis of the ionosphere and thermosphere response to Solar Proton Events (SPE) and magnetospheric proton precipitation in January 2005, which was carried out using the model of the entire atmosphere EAGLE. The ionization rates for the considered period were acquired from the AIMOS (Atmospheric Ionization Module Osnabrück) dataset. For numerical experiments, we applied only the proton-induced ionization rates of that period, while all the other model input parameters, including the electron precipitations, corresponded to the quiet conditions. In January 2005, two major solar proton events with different energy spectra and proton fluxes occurred on January 17 and January 20. Since two geomagnetic storms and several sub-storms took place during the considered period, not only solar protons but also less energetic magnetospheric protons contributed to the calculated ionization rates. Despite the relative transparency of the thermosphere for high-energy protons, an ionospheric response to the SPE and proton precipitation from the magnetotail was obtained in numerical experiments. In the ionospheric E layer, the maximum increase in the electron concentration is localized at high latitudes, and at heights of the ionospheric F2 layer, the positive perturbations were formed in the near-equatorial region. An analysis of the model-derived results showed that changes in the ionospheric F2 layer were caused by a change in the neutral composition of the thermosphere. We found that in the recovery phase after both solar proton events and the enhancement of magnetospheric proton precipitations associated with geomagnetic disturbances, the TEC and electron density in the F region and in topside ionosphere/plasmasphere increase at low- and mid-latitudes due to an enhancement of atomic oxygen concentration. Our results demonstrate an important role of magnetospheric protons in the formation of negative F-region ionospheric storms. According to our results, the topside ionosphere/plasmasphere and bottom-side ionosphere can react to solar and magnetospheric protons both with the same sign of disturbances or in different way. The same statement is true for TEC and foF2 disturbances. Different disturbances of foF2 and TEC at high and low latitudes can be explained by topside electron temperature disturbances.  相似文献   

10.
The quasi-biennial oscillation, QBO, a well known periodicity in the equatorial stratospheric zonal winds, is also found in ionospheric parameters and in solar and geomagnetic activity indices. Many authors speculated about the link between the QBO in solar and geomagnetic activity and the QBO in atmospheric parameters. In this work we analyze the presence of the QBO in the ionosphere using the Vertical Total Electron Content (VTEC) values obtained from Global Navigation Satellite System (GNSS) measurements during the period 1999–2012. In particular, we used IONEX files, i.e. the International GNSS Service (IGS) ionospheric products. IONEX provide VTEC values around the world at 2-h intervals. From these data we compute global and zonal averages of VTEC at different local times at mid and equatorial geomagnetic latitudes. VTEC and Extreme Ultra Violet (EUV) solar flux time series are analyzed using a wavelet multi resolution analysis. In all cases the QBO is detected among other expected periodicities.  相似文献   

11.
We have studied the time delay of ionospheric storms to geomagnetic storms at a low latitude station Taoyuan (25.02°N, 121.21°E), Taiwan using the Dst and TEC data during 126 geomagnetic storms from the year 2002 to 2014. In addition to the known local time dependence of the time delay, the statistics show that the time delay has significant seasonal characteristics, which can be explained within the framework of the seasonal characteristics of the ionospheric TEC. The data also show that there is no correlation between the time delay and the intensity of magnetic storms. As for the solar activity dependence of the time delay, the results show that there is no relationship between the time delay of positive storms and the solar activity, whereas the time delay of negative storms has weakly negative dependence on the solar activity, with correlation coefficient −0.41. Especially, there are two kinds of extreme events: pre-storm response events and long-time delay events. All of the pre-storm response events occurred during 15–20 LT, manifesting the Equator Ionospheric Anomaly (EIA) feature at Taoyuan. Moreover, the common features of the pre-storm response events suggest the storm sudden commencement (SSC) and weak geomagnetic disturbance before the main phase onset (MPO) of magnetic storms are two main possible causes of the pre-storm response events. By analyzing the geomagnetic indices during the events with long-time delay, we infer that this kind of events may not be caused by magnetic storms, and they might belong to ionospheric Q-disturbances.  相似文献   

12.
An analysis of properties and peculiarities of the nighttime winter foF2 increases (NWI) in the East Siberia is made on data of ionospheric station Irkutsk in the periods 1958–1992 and 2002–2009 and the empirical model of the F2 layer critical frequency under the geomagnetic quiet conditions deduced from these data (model Q-F2). It is revealed, that the NWI is the stable regularity of the quiet ionosphere over Irkutsk. The amplitude of the NWI (the difference between maximum and minimum foF2 values at night hours) is the greatest in December–January and nearly the same at low and middle solar activity. It is a peculiarity of the quiet ionosphere in the East Siberia. Maximum in night foF2 under quiet geomagnetic conditions is observed mainly after midnight (02-04 LT) and is shifted to predawn hours as solar activity increases. At low solar activity the quiet ionosphere at ∼02–04 LT shows the following properties: (a) the fluctuations of foF2 and hmF2 are in the reverse correlation but this dependence is weak; (b) very strong fluctuations of foF2 (|δfoF2| > 30%) occur seldom (∼4% of events) and almost all of them are positive; an example of very strong fluctuations of foF2 up to 60% can be an extreme increase in the foF2 on 19.12.2008; (c) the very strong enhancements of foF2 in the NWI maximum can be observed at the low geomagnetic activity, they occur more often during substorms but very seldom during geomagnetic storms. Possible reasons of these properties of NWI are discussed.  相似文献   

13.
In this paper, we have investigated the responses of the ionospheric F region at equatorial and low latitude regions in the Brazilian sector during the super geomagnetic storm on 15–16 May 2005. The geomagnetic storm reached a minimum Dst of −263 nT at 0900 UT on 15 May. In this paper, we present vertical total electron content (vTEC) and phase fluctuations (in TECU/min) from Global Positioning System (GPS) observations obtained at Belém, Brasília, Presidente Prudente, and Porto Alegre, Brazil, during the period 14–17 May 2005. Also, we present ionospheric parameters h’F, hpF2, and foF2, using the Canadian Advanced Digital Ionosonde (CADI) obtained at Palmas and São José dos Campos, Brazil, for the same period. The super geomagnetic storm has fast decrease in the Dst index soon after SSC at 0239 UT on 15 May. It is a good possibility of prompt penetration of electric field of magnetospheric origin resulting in uplifting of the F region. The vTEC observations show a trough at BELE and a crest above UEPP, soon after SSC, indicating strengthening of nighttime equatorial anomaly. During the daytime on 15 and 16 May, in the recovery phase, the variations in foF2 at SJC and the vTEC observations, particularly at BRAZ, UEPP, and POAL, show large positive ionospheric storm. There is ESF on the all nights at PAL, in the post-midnight (UT) sector, and phase fluctuations only on the night of 14–15 May at BRAZ, after the SSC. No phase fluctuations are observed at the equatorial station BELE and low latitude stations (BRAZ, UEPP, and POAL) at all other times. This indicates that the plasma bubbles are generated and confined on this magnetically disturbed night only up to the low magnetic latitude and drifted possibly to west.  相似文献   

14.
Ionospheric disturbances associated with solar activity may occur via two basic mechanisms. The first is related to the direct impact on the ionosphere of EUV photons from a flare, and the second by prompt electric field penetration into the magnetosphere during geomagnetic storms. In this paper we examine the possibility that these two mechanisms may have an impact at mid latitudes by calculating the total electron content (TEC) from GPS stations in Mexico during several large X-ray flares. We have found that indeed large, complex flares, which are well located, may affect the mid latitude ionosphere. In fact, in the solar events of July 14, 2000 and April 2001 storms, ionospheric disturbances were observed to increase up to 138 and 150 TECu, respectively, due to the influence of EUV photons. Also, during the solar events of July 2000, April 2001, Halloween 2003, January 2005 and December 2006, there are large ionospheric disturbances (up to 393 TECu in the Halloween Storms), due to prompt penetration electric field, associated with CME producing geomagnetic storm.  相似文献   

15.
Ionospheric disturbances are known to have adverse effects on the satellite-based communication and navigation. One particular type of ionospheric effects, observed during major geomagnetic storms and threatening the integrity performance of both ground-based and space-based GNSS augmentation systems, is the sharp increase/decrease in the ionospheric delay that propagates in horizontal direction, thus called for convenience ‘moving ionospheric wall’. This paper presents preliminary results from researching such anomalous ionospheric delay gradients at European middle latitudes during the storm events of 29 October 2003 and 20 November 2003. For the purpose, 30-s GPS data from the Belgian permanent network was used for calculating and analysing the slant ionospheric delay and total electron content values. It has been found that, during these two particular storm events, substantial gradients did occur in Europe although they were not so pronounced as in the American sector.  相似文献   

16.
The paper presents an empirical model of the total electron content (TEC) response to the geomagnetic activity described by the Kp-index. The model is built on the basis of TEC measurements covering the region of North America (50°W–150°W, 10°N–60°N) for the period of time between October 2004 and December 2009. By using a 2D (latitude-time) cross-correlation analysis it is found that the ionospheric response to the geomagnetic activity over the considered geographic region and at low solar activity revealed both positive and negative phases of response. The both phases of the ionospheric response have different duration and time delay with respect to the geomagnetic storm. It was found that these two parameters of the ionospheric response depend on the season and geographical latitude. The presence of two phases, positive and negative, of the ionospheric response imposed the implementation of two different time delay constants in order to properly describe the two different delayed reactions. The seasonal dependence of the TEC response to geomagnetic storms is characterized by predominantly positive response in winter with a short (usually ∼5–6 h) time delay as well as mainly negative response in summer with a long (larger than 15 h) time delay. While the TEC response in March and October is more close to the winter one the response in April and September is similar to the summer one.  相似文献   

17.
The Earth's ionosphere and especially its equatorial part is a highly dynamical medium. Geostationary satellites are known to be a powerful tool for ionospheric studies. Recent developments in BDS-GEO satellites allow such studies on the new level due to the best noise pattern in TEC estimations, which corresponds to those of GPS/GLONASS systems. Here we used BDS-GEO satellites to demonstrate their capability for studying equatorial ionosphere variability on different time scales. Analyzing data from the equatorial SIN1 IGS station we present seasonal variations in geostationary slant TEC for the periods of high (October 2013 - October 2014) and low (January 2017 - January 2018) solar activity, which show semi-annual periodicity with amplitudes about 10 TECU during solar maximum and about 5 TECU during the solar minimum. The 27-day variations are also prominent in geostationary slant TEC variations, which correlates quite well with the variations in solar extreme UV radiation. We found semi-annual pattern in small scale ionospheric disturbances evaluated based on geostationary ROTI index: maximal values correspond to spring and fall equinoxes and minimum values correspond to summer and winter solstices. The seasonal asymmetry in ROTI values was observed: spring equinox values were almost twice as higher than fall equinox ones. We also present results on the 2017 May 28–29 G3 geomagnetic storm, when ~30 TECU positive anomaly was recorded, minor and final major sudden stratospheric warmings in February and March 2016, with positive daytime TEC anomalies up to 15–20 TECU, as well as the 2017 September 6 X9.3 solar flare with 2 TECU/min TEC rate. Our results show the large potential of geostationary TEC estimations with BDS-GEO signals for continuous monitoring of space weather effects in low-latitude and equatorial ionosphere.  相似文献   

18.
We describe a Parameterized Regional Ionospheric Model (PARIM) to calculate the spatial and temporal variations of the ionospheric electron density/plasma frequency over the Brazilian sector. The ionospheric plasma frequency values as calculated from an enhanced Sheffield University Plasmasphere–Ionosphere Model (SUPIM) were used to construct the model. PARIM is a time-independent 3D regional model (altitude, longitude/local time, latitude) used to reproduce SUPIM plasma frequencies for geomagnetic quiet condition, for any day of the year and for low to moderately high solar activity. The procedure to obtain the modeled representation uses finite Fourier series so that all plasma frequency dependencies can be represented by Fourier coefficients. PARIM presents very good results, except for the F region peak height (hmF2) near the geomagnetic equator during times of occurrence of the F3 layer. The plasma frequency calculated by IRI from E region to bottomside of the F region present latitudinal discontinuities during morning and evening times for both solar minimum and solar maximum conditions. Both the results of PARIM and the IRI for the E region peak density show excellent agreement with the observational values obtained during the conjugate point equatorial experiment (COPEX) campaign. The IRI representations significantly underestimate the foF2 and hmF2 compared to the observational results over the COPEX sites, mainly during the evening–nighttime period.  相似文献   

19.
The results of modeling of ionospheric disturbances observed in the East Asian region during moderate storms are presented. The numerical model for ionosphere–plasmasphere coupling developed at the ISTP SB RAS is used to interpret the data of observations at ionospheric stations located in the longitudinal sector of 90–130°E at latitudes from auroral zone to equator. There is obtained a reasonable agreement between measurements and modeling results for winter and equinox. In the summer ionosphere, at the background of high ionization by the solar EUV radiation in the quiet geomagnetic period the meridional thermospheric wind strongly impacts the electron concentration in the middle and auroral ionosphere. The consistent calculations of the thermospheric wind permit to obtain the model results which are closer to summer observations. The actual information about the space-time variations of thermosphere and magnetosphere parameters should be taken into account during storms.  相似文献   

20.
In this paper we compared the ionospheric peak parameters (peak electron density of the F region, NmF2, and peak height of the F region, hmF2) retrieved from the FORMASAT-3/COSMIC (COSMIC for short) satellite measurement with those from ionosonde observation at Sanya (18.3°N, 109.6°E) during the period of 2008–2013. Although COSMIC NmF2 (hmF2) tends to be lower (higher) than ionosonde NmF2 (hmF2), the results show that the ionospheric peak parameters retrieved from COSMIC measurement generally agree well with ionosonde observation. For NmF2 the correlation between the COSMIC measurement and the ionosonde observation is higher than 0.89, and for hmF2 the correlation is higher than 0.80. The correlation of the ionospheric peak parameters decreases when solar activity increases. The performance of COSMIC measurement is acceptable under geomagnetic disturbed condition. The correlation of NmF2 between COSMIC and ionosonde measurements is higher (lower) during the nighttime (daytime), while the correlation of hmF2 is lower (higher) during the nighttime (daytime).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号