首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Analysis of the seasonal, hemispheric and latitudinal variation of the ionospheric F2 peak during periods of disturbed geomagnetic conditions in 2011, a year of low solar activity, had been studied using hourly data obtained from low- and mid-latitude ionosonde stations. Our results showed an enhancement in F2-layer maximum electron density (NmF2) at daytime over low latitudes. For the mid-latitude stations, NmF2 depletion pre-dominates the daytime and overturned at nighttime. In general, the variation in terms of magnitude is higher in the low-latitude than at mid-latitude. The nighttime decrease in NmF2 is accompanied by a corresponding F2 peak height (hmF2) increase and overturned at daytime. The hmF2 response during the equinoctial months is lower than the solstices. NmF2 shows distinct seasonal, hemispheric and latitudinal dependence in its response. Appearance of a significant ionospheric effect in southern hemisphere is higher than in the northern hemisphere, and is more pronounced in the equinoxes at low latitudes. At mid-latitudes, the ionospheric effect is insignificant at both hemispheres. A negative ionospheric response dominates the whole seasons at the mid-latitude except for March equinox. The reverse is the case for the hmF2 observation. The amplitudes of both the NmF2 and hmF2 increase with increasing latitude and maximize in the southern hemisphere in terms of longitude.  相似文献   

2.
The main objective of the present investigation has been to compare the ionospheric parameters (NmF2 and hmF2) observed by two ground-based ionospheric sounders (one at PALMAS- located near the magnetic equator and the other at Sao Jose dos Campos-located in the low-latitude region) in the Brazilian sector with that by the satellite FORMOSAT-3/COSMIC radio occultation (RO) measurements during two geomagnetic storms which occurred in December 2006 and July 2009. It should be pointed out that in spite of increasing the latitude (to 10°) and longitude (to 20°) around the stations; we had very few common observations. It has been observed that both the peak electron density (NmF2) and peak height (hmF2) observed by two different techniques (space-borne COSMIC and ground-based ionosondes) during both the geomagnetic storm events compares fairly well (with high correlation coefficients) at the two stations in the Brazilian sector. It should be pointed out that due to equatorial spread F (ESF) in the first storm (December 2006) and no-reflections from the ionosphere during nighttime in the second storm (July 2009), we had virtually daytime data from the two ionosondes.  相似文献   

3.
There are remarkable ionospheric discrepancies between space-borne (COSMIC) measurements and ground-based (ionosonde) observations, the discrepancies could decrease the accuracies of the ionospheric model developed by multi-source data seriously. To reduce the discrepancies between two observational systems, the peak frequency (foF2) and peak height (hmF2) derived from the COSMIC and ionosonde data are used to develop the ionospheric models by an artificial neural network (ANN) method, respectively. The averaged root-mean-square errors (RMSEs) of COSPF (COSMIC peak frequency model), COSPH (COSMIC peak height model), IONOPF (Ionosonde peak frequency model) and IONOPH (Ionosonde peak height model) are 0.58 MHz, 19.59 km, 0.92 MHz and 23.40 km, respectively. The results indicate that the discrepancies between these models are dependent on universal time, geographic latitude and seasons. The peak frequencies measured by COSMIC are generally larger than ionosonde’s observations in the nighttime or middle-latitudes with the amplitude of lower than 25%, while the averaged peak height derived from COSMIC is smaller than ionosonde’s data in the polar regions. The differences between ANN-based maps and references show that the discrepancies between two ionospheric detecting techniques are proportional to the intensity of solar radiation. Besides, a new method based on the ANN technique is proposed to reduce the discrepancies for improving ionospheric models developed by multiple measurements, the results indicate that the RMSEs of ANN models optimized by the method are 14–25% lower than the models without the application of the method. Furthermore, the ionospheric model built by the multiple measurements with the application of the method is more powerful in capturing the ionospheric dynamic physics features, such as equatorial ionization, Weddell Sea, mid-latitude summer nighttime and winter anomalies. In conclusion, the new method is significant in improving the accuracy and physical characteristics of an ionospheric model based on multi-source observations.  相似文献   

4.
We report the results of ionospheric measurements from DPS-4 installed at Multan (Geog coord. 30.18°N, 71.48°E, dip 47.4°). The variations in F2-layer maximum electron density NmF2 and its peak height hmF2 are studied during the deep solar minimum between cycles 23 & 24 i.e 2008–2009 with comparisons conducted with the International Reference Ionosphere (IRI) versions 2012 & 2016. We find that the hmF2 observations peak around the pre-sunrise and sunrise hours depending on the month. Seasonally, the daytime variation of NmF2 is higher in the Equinox and Summer, while daytime hmF2 are slightly higher in the Equinox and Winter. High values of hmF2 around midnight are caused by an increase of upward drifts produced by meridional winds. The ionosphere over Multan, which lies at the verge of low and mid latitude, is affected by both E×B drifts and thermospheric winds as evident from mid-night peaks and near-sunrise dips in hmF2. The results of the comparison of the observed NmF2 and hmF2 for the year 2008–2009 with the IRI-2012 (both NmF2 and hmF2) and IRI-2016 (only hmF2) estimates indicate that for NmF2, IRI-2012 with Consultative Committee International Radio (CCIR) option produces values in better agreement with observed data. Whereas, for hmF2, IRI-2016 with both International Union of Radio Science (URSI) and CCIR SHU-2015 options, predicts well for nighttime hours throughout the year. However, the IRI-2012 with CCIR option produces better agreement with data during daytime hours. Furthermore, IRI-2012 with CCIR option gives better results during Equinox months, whereas, IRI-2016 with both URSI and CCIR SHU-2015 options predict well for Winter and Summer.  相似文献   

5.
The magnetic storm of 9 March 2012 is a single step intense storm (Dst = −143 nT) whose main phase begins around 0100 UT and lasted for almost 11 h. The increases in NmF2 recorded 33% and 67% incidence respectively during the main and the recovery phase of the storm at the stations considered. The increase in hmF2 occurred concurrently with the increase in thickness parameter B0 between 0000 and 1100 UT, and a simultaneous decrease in the shape parameter B1 for the entire mid-latitude stations. Generally, B1 responded to the storm with a decrease away from the quiet day average, and decreased simultaneously with the increase in NmF2. B0 displays higher variability magnitude during daytime than the nighttime period. The occasional differences in the response of the ionospheric parameters to the storm event are attributed to longitudinal differences. Variation in hmF2 and NmF2 is projected to change in B1, but the rationale behind this effect on B1 is still not known and therefore left open. The two IRI options over-estimate the observed values with that of URSI higher than CCIR. The over-estimation was higher during the nighttime than the daytime for NmF2 response for the mid-latitude stations and the reverse for the equatorial station. A fairer fit of the model with the observed for all parameters over Jicamarca suggests that equatorial regions are better represented on the model. Extensive study of B1 and B0 is recommended to arrive at a better performance of IRI.  相似文献   

6.
This paper presents the observed ionospheric F-region critical frequency, foF2, and peak height, hmF2, at northern crest of equatorial ionization anomaly (EIA) area station, namely Chung-Li (24.9°N, 121.1°E, dip 35°), and to be compared with International Reference Ionosphere model (IRI-2001) predictions for the period from 1994 to 1999, corresponding to half of the 23rd solar cycle. The diurnal and seasonal variation of foF2 and hmF2 are analyzed for different solar phases, respectively. The result shows the largest discrepancies were observed during nighttime for foF2 and hmF2, respectively. The value of foF2 both CCIR and URSI selected in the IRI model produced a good agreement during the daytime and underestimated during the noon time for high solar activities. The underestimation at noon time is mainly caused by the fountain effect from equator. Further, the peak height hmF2 shows a larger variability around the midnight than daytime in the equinox and winter seasons and reserved in summer, respectively. The study shows that the monthly median values of observed hmF2 is somewhat lower than those predicated by the IRI model, at night time in all the seasons except the period of 04:00–06:00 LT and reverse at daytime in summer. In general the IRI model predictions with respect to the observed in hmF2 is much better than foF2. The percentage deviation of the observed foF2 (hmF2) values with respect to the IRI model varies from 5% to 80% (0–25%) during nighttime and 2–17% (0–20%) at daytime, respectively. In general, the model generates good results, although some improvements are still necessary to implement in order to obtain better simulations for ionospheric low-latitudes region.  相似文献   

7.
In the present work values of peak electron density (NmF2) and height of F2 ionospheric layer (hmF2) over Tehran region at a low solar activity period are compared with the predictions of the International Reference Ionosphere models (IRI-2001 and IRI-2007). Data measured by a digital ionosonde at the ionospheric station of the Institute of Geophysics, University of Tehran from July 2006 to June 2007 are used to perform the calculations. Formulations proposed by  and  are utilized to calculate the hmF2. The International Union of Radio Science (URSI) and International Radio Consultative Committee (CCIR) options are employed to run the IRI-2001 and IRI-2007 models. Results show that both IRI-2007 and IRI-2001 can successfully predict the NmF2 and hmF2 over Tehran region. In addition, the study shows that predictions of IRI-2007 model with CCIR coefficient has closer values to the observations. Furthermore, it is found that the monthly average of the percentage deviation between the IRI models predictions and the values of hmF2 and NmF2 parameters are less than 10% and 21%, respectively.  相似文献   

8.
We present the spatial maps of the ionosphere–plasmasphere slab thickness τ (ratio of the vertical total electron content, TEC, to the F-region peak electron density, NmF2) during the intense ionospheric storms of October–November 2003. The model-assisted technology for estimate of the upper boundary of the ionosphere, hup, from the slab thickness components in the bottomside and topside ionosphere – eliminating the plasmasphere contribution of τ – is applied at latitudes 35° to 70°N and longitudes −10° to 40°E, from the data of 20 observatories of GPS-TEC and ionosonde networks, for selected days and hours of October and November 2003. The daily–hourly values of NmF2, hmF2 and TECgps are used as the constrained parameters for the International Reference Ionosphere extended to the plasmasphere, IRI-Plas, during the ionospheric quiet days, positive and negative storm phases for estimate of τ and hup. Good correlation has been found between the slab thickness and the upper boundary of the ionosphere for the intense ionospheric storms at October–November 2003. During the negative phase of the ionospheric storm, when the ionospheric plasma density is exhausted, the nighttime upper boundary of the ionosphere is greatly uplifted towards the magnetosphere tail, while the daytime upper boundary of the ionosphere is reduced below 500 km over the Earth.  相似文献   

9.
The ionospheric sounding observations using the Canadian Advanced Digital Ionosondes (CADIs) operational at Palmas (PAL; 10.2°S, 48.2°W; dip latitude 6.6°S; a near-equatorial station), and São José dos Campos (SJC, 23.2°S, 45.9°W; dip latitude 17.6°S; a low-latitude station located under the southern crest of the equatorial ionospheric anomaly), Brazil, are analyzed during the different seasons viz., winter (June and July 2003), spring (September and October 2003), summer (December 2003 and January 2004), and fall (March and April 2004). The period used has medium solar activity (sunspot number between 77.4 and 39.3). The seasonal mean variations (using only geomagnetically quiet days) of the ionospheric parameters foF2 (critical frequency of the F-region), hpF2 (virtual height at 0.834 foF2; considered to be close to hmF2 (peak height of the F-region)), and h’F (minimum virtual height of the F-region) are calculated and compared between PAL and SJC. The prominent differences between PAL and SJC are as follows: h’F variations show strong post-sunset enhancement at PAL during the seasons of spring, summer, and fall; hpF2 variations show pre-sunrise uplifting of the F-layer at both stations during all the seasons and the hpF2 values during the daytime are lower at SJC compared with PAL during all the seasons; the foF2 variations show mid-day bite-out at PAL during all the seasons and SJC shows strong equatorial ionospheric anomaly during summer and fall seasons. Also, the seasonal variations of the ionospheric parameters foF2 and hpF2 (with ±1 standard deviation) observed at PAL and SJC are compared with the IRI-2007 model results of foF2 and hmF2. In addition, variations of the foF2 and hpF2 observed at SJC are compared with the IRI-2001 model results of foF2 and hmF2. It should be pointed out that the ionospheric parameter hpF2 is much easier to obtain using computer program developed at UNIVAP compared with hmF2 (using POLAN program). During the daytime due to underlying ionization hpF2 estimated is higher (approximately 50 km) than the true peak height hmF2. During the nighttime hpF2 is fairly close to hmF2. The comparison between the foF2 variations observed at PAL and SJC with the IRI-2007 model results shows a fairly good agreement during all the seasons. However, the comparison between the hpF2 variations observed at PAL and SJC with the hmF2 variations with the IRI-2007 model results shows: (1) a fairly good agreement during the nighttime in all the seasons; (2) the model results do not show the pre-sunrise uplifting of the F-layer at PAL and SJC in any season; (3) the model results do not show the post-sunset uplifting of the F-layer at PAL; (4) considering that, in general, hpF2 is higher than hmF2 during the daytime by about 50 km, the model results are in good agreement at PAL and SJC during all the seasons except summer at SJC, when large discrepancies in the observed hpF2 and modeled hmF2 are observed. Also, it has been observed that, in general, hmF2 values for SJC calculated using IRI-2001 are higher than IRI-2007 during the daytime in winter, summer, and fall. However, hmF2 values for SJC calculated using IRI-2001, are lower than IRI-2007 during the nighttime in spring.  相似文献   

10.
In this paper, the F2-layer critical frequency (foF2) and peak height (hmF2) measured by the FM/CW ionosonde at Thailand equatorial latitude station, namely Chumphon (10.72°N, 99.37°E, dip 3.22) are presented. The measurement data during low solar activity from January 2004 to December 2006 are analyzed based on the diurnal, seasonal variation. The results are then compared with IRI-2001 model predictions. Our study shows that: (1) In general, both the URSI and CCIR options of the IRI model give foF2 close to the measured ones, but the CCIR option produces a smaller range of deviation than the URSI option. The agreement during daytime is generally better than during nighttime. Overestimation mostly occurs in 2004 and 2006, while underestimation is during pre-sunrise hours in June solstice in 2005. The peak foF2 around sunset is higher during March equinox and September equinox than the other seasons, with longer duration of maximum levels in March equinox than September equinox. Large coefficients of variability foF2 occur during pre-sunrise hours. Meanwhile, the best agreement between the observed foF2 and the IRI model is obtained in June solstice. (2) In general, The IRI (CCIR) model predicts the observed hmF2 well during daytime in June solstice from 2004–2006, but it overestimates during March equinox, September equinox and December solstice. For nighttime, the model overestimates hmF2 values for all seasons especially during March equinox and September equinox. However, the model underestimates hmF2 values during September equinox and for some cases during June solstice and December solstice at pre-sunrise. The agreement between the IRI model and the hmF2(M3000OBS) is worst around noontime, post-sunset and pre-sunrise hours. All comparative studies give feedback for new improvements of CCIR and URSI IRI models.  相似文献   

11.
This study aims to validate the electron density profiles from the FORMOSAT-3/COSMIC satellites with data from Digisondes in Brazil during the low solar activity period of the years 2006, 2007 and 2008. Data from three Brazilian Digisondes located in Cachoeira Paulista (22.7°S, 45°W), São Luís (2.5°S, 44.2°W) and Fortaleza (3.8°S, 38°W) were used in the comparisons. Only the profiles whose density peak have been obtained near the stations coordinates were chosen for the comparison. Although there is generally good agreement, some cases of discrepancies are observed. Some of these discrepancies cannot be explained simply by the differences in the position and local time of the measurements made by the satellite and the ground-based station. In such cases it is possible that local conditions, such as the presence of a trans-equatorial wind or electron density gradients, could contribute to the observed differences. Comparison of the F2 layer peak parameters, the NmF2 and hmF2, obtained from the two techniques showed that, in general, the agreement for NmF2 is pretty good and the NmF2 has a better correlation than hmF2. Cachoeira Paulista had the worst correlation for hmF2 possibly because this station is situated in the region under the influence of the equatorial ionization anomaly, a region where it is more difficult to apply the RO technique without violating the spherical symmetry condition.  相似文献   

12.
In this paper, we present our recent work on developing an updated global model of the ionospheric F2 peak height hmF2 parameter by combining data from the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC/FORMOSAT-3) radio occultation (RO) measurements and from the extended global ionosonde stations. In particular, 10 Chinese ionosonde stations’ data are newly introduced into this study. The modeling technique used is based on a two-layer empirical orthogonal function (EOF) expansion. Global distributions of hmF2 maps calculated using the newly constructed global model and the one provided by the International Reference Ionosphere model (IRI-ITU-R) are compared with the global distributions of hmF2 obtained by the COSMIC RO measurements and quantitative statistical analysis of the differences between the model results and those of the COSMIC RO measurements is made for the low (2008) and high (2012) solar activity years. The obtained average root-mean-square differences (RMSEs) for our model are 27.7 km (11.1%) and 31.0 km (9.8%), respectively for the years 2008 and 2012, whereas those for the IRI-ITU-R model are 39.9 km (16.9%) and 35.0 km (11.6%), respectively. Comparison of the results calculated both by our model and the IRI-ITU-R model with the digisonde observation is also made. The comparisons show that the newly constructed global hmF2 model can reproduce reasonably well the observations and perform better than IRI-ITU-R model.  相似文献   

13.
With a network of ground-based ionosondes distributed around the world, the ionospheric peak electron density and its height measured by FORMOSAT-3/COSMIC satellites in terms of GPS radio occultation technique are extensively examined in this article. It is found that, in spite of the latitude, the mean values of the peak electron density measured by COSMIC satellites are systematically smaller than those observed by ground-based ionosondes. The discrepancy between them is dependent on the latitude, namely, it is small in low and mid-latitudes and large in high-latitude region. Moreover, statistical analysis shows that the slopes of the regression line that is best fitted to the scatter diagram of occultation-retrieved peak electron density (ordinate axis) versus ionosonde-observed peak density (abscissa axis) are universally less than one. This feature is believed to be the result of path average effect of non-uniform distribution of the electron density along the GSP ray during the occultation. A comparison between COSMIC-measured peak height and ionosonde-derived peak height hmF2 indicates that the former is systematically higher than the latter. The difference in the two can be as large as 20% or more in equatorial and low-latitude regions. This result implies that the peak height hmF2 derived from the virtual height through true height analysis based on Titheridge method seems to underestimate the true peak height. The correlation between COSMIC and ionosonde peak electron densities is analyzed and the result reveals that correlation coefficient seems to be dependent on the fluctuation of the occultation-retrieved electron density profile. The correlation will be higher (lower) for the electron density profiles with smaller (larger) fluctuations. This feature suggests that the inhomogeneous distribution of the electron density along the GPS ray path during the occultation plays an important role affecting the correlation between COSMIC and ionosonde measurements.  相似文献   

14.
Diurnal and seasonal variations of critical frequency of ionospheric F2-region ‘foF2’ and the height of peak density ‘hmF2’ are studied using modern digital ionosonde observations of equatorial ionization anomaly (EIA) crest region, Bhopal (23.2°N, 77.6°E, dip 18.5°N), during solar minimum period 2007. Median values of these parameters are obtained at each hour using manually scaled data during different seasons and compared with the International Reference Ionosphere-2001 model predictions. The observations suggest that on seasonal basis, the highest values of foF2 are observed during equinox months, whereas highest values of hmF2 are obtained in summer and lowest values of both foF2 and hmF2 are observed during winter. The observed median and IRI predicted values of foF2 and hmF2 are analyzed with upper and lower bound of inter-quartile range (IQR) and it is find out that the observed median values are well inside the inter-quartile range during the period of 2007. Comparison of the recorded foF2 and hmF2 values with the IRI-2001 output reveals that IRI predicted values exhibit better agreement with hmF2 as compared to foF2. In general, the IRI model predictions show some agreement with the observations during the year 2007. Therefore it is still necessary to implement improvements in order to obtain better predictions for EIA regions.  相似文献   

15.
The data presented in this work describes the diurnal and seasonal variation in hmF2, NmF2, and the electrojet current strength over an African equatorial station during a period of low solar activity. The F2 region horizontal magnetic element H revealed that the Solar quiet Sq(H) daily variation rises from early morning period to maximum around local noon and falls to lower values towards evening. The F2 ionospheric current responsible for the magnetic field variations is inferred to build up at the early morning hours, attaining maximum strength around 1200 LT. The Sq variation across the entire months was higher during the daytime than nighttime. This is ascribed to the variability of the ionospheric parameters like conductivity and winds structure in this region. Seasonal daytime electrojet (EEJ) current strength for June solstice, March and September equinoxes, respectively had peak values ranging within 27–35 nT (at 1400 LT) , 30–40 nT (at 1200 LT) and 35–45 nT (at 1500 LT). The different peak periods of the EEJ strength were attributed to the combined effects of the peak electron density and electric field. Lastly, the EEJ strength was observed to be higher during the equinoxes than the solstice period.  相似文献   

16.
In this work, the foF2 and hmF2 parameters at the conjugate points near the magnetic equator of Southeast Asia are studied and compared with the International Reference Ionosphere (IRI) model. Three ionosondes are installed nearly along the magnetic meridian of 100°E; one at the magnetic equator, namely Chumphon (10.72°N, 99.37°E, dip angle 3.0°N), and the other two at the magnetic conjugate points, namely Chiang Mai (18.76°N, 98.93°E, dip angle 12.7°N) and Kototabang (0.2°S, 100.30°E, dip angle 10.1°S). The monthly hourly medians of the foF2 and hmF2 parameters are calculated and compared with the predictions obtained from the IRI-2007 model from January 2004 to February 2007. Our results show that: the variations of foF2 and hmF2 predicted by the IRI-2007 model generally show the similar feature to the observed data. Both parameters generally show better agreement with the IRI predictions during daytime than during nighttime. For foF2, most of the results show that the IRI model overestimates the observed foF2 at the magnetic equator (Chumphon), underestimates at the northern crest (Chiang Mai) and is close to the measured ones at the southern crest of the EIA (Kototabang). For hmF2, the predicted hmF2 values are close to the hmF2(M3000F2OBS) during daytime. During nighttime, the IRI model gives the underestimation at the magnetic equator and the overestimation at both EIA crests. The results are important for the future improvements of the IRI model for foF2 and hmF2 over Southeast Asia region.  相似文献   

17.
The Ionospheric F2-layer peak parameters response to a magnetic storm had been investigated over Ilorin, Nigeria (Lat. 8:53°N, Long. 4.5°E, dip angle, −2.96°), Jicamarca, Peru (11.95°S, 76.87°W, dip angle, 0.8°) and Hermanus, South Africa (34.42°S, 19.22°E, dip angle, −60.77°), using percentage enhancement/depletion values. Our results showed an enhancement in NmF2 at all of these stations. Averagely, pre-noon and post-noon peaks are highest at Ilorin during quiet time. The similar pattern observed for quiet condition between Ilorin and Jicamarca was due to their latitudinal positions. For disturbed NmF2 condition, Jicamarca and Ilorin recorded higher peaks at nighttime than during the daytime for the storms main phase, and the reverse over Hermanus. The nighttime and daytime increases were observed respectively at Ilorin and Hermanus during the recovery period. The hmF2 variation recorded higher enhancement at Jicamarca during the daytime and at Hermanus at nighttime during the main phase. During the recovery phase, the highest enhancement was recorded during the daytime at Jicamarca, and over Hermanus at nighttime. These observations find their explanation in the magnetospheric current, solar wind and E × B drift.  相似文献   

18.
Monthly median values of foF2, hmF2 and M(3000)F2 parameters, with quarter-hourly time interval resolution for the diurnal variation, obtained with DPS4 digisonde at Hainan (19.5°N, 109.1°E; Geomagnetic coordinates: 178.95°E, 8.1°N) are used to investigate the low-latitude ionospheric variations and comparisons with the International Reference Ionosphere (IRI) model predictions. The data used for the present study covers the period from February 2002 to April 2007, which is characterized by a wide range of solar activity, ranging from high solar activity (2002) to low solar activity (2007). The results show that (1) Generally, IRI predictions follow well the diurnal and seasonal variation patterns of the experimental values of foF2, especially in the summer of 2002. However, there are systematic deviation between experimental values and IRI predictions with either CCIR or URSI coefficients. Generally IRI model greatly underestimate the values of foF2 from about noon to sunrise of next day, especially in the afternoon, and slightly overestimate them from sunrise to about noon. It seems that there are bigger deviations between IRI Model predictions and the experimental observations for the moderate solar activity. (2) Generally the IRI-predicted hmF2 values using CCIR M(3000)F2 option shows a poor agreement with the experimental results, but there is a relatively good agreement in summer at low solar activity. The deviation between the IRI-predicted hmF2 using CCIR M(3000)F2 and observed hmF2 is bigger from noon to sunset and around sunrise especially at high solar activity. The occurrence time of hmF2 peak (about 1200 LT) of the IRI model predictions is earlier than that of observations (around 1500 LT). The agreement between the IRI hmF2 obtained with the measured M(3000)F2 and the observed hmF2 is very good except that IRI overestimates slightly hmF2 in the daytime in summer at high solar activity and underestimates it in the nighttime with lower values near sunrise at low solar activity.  相似文献   

19.
The diurnal and seasonal changes of the variability (VR) of Maximum Useable Frequency (MUF) are compared with those of peak electron density (NmF2) at Ibadan (7.4°N, 3.9°E, 6°S dip) in the African sector. Also compared is the latitudinal effect on both characteristics by combining data from Singapore (1.3°N, 103.8°E, 17.6°S dip) in the East Asian sector and Slough (51.5°N, 359.4°E, 66.5°S dip) in the European sector. MUF VR is found to be about half of NmF2 VR at all the hours and seasons and during the solar cycle epochs considered for the three stations. While nighttime MUF VR is greater in June Solstice and September Equinox during both low and moderate solar activities and in September Equinox and December Solstice during high solar activity, nighttime NmF2 VR is greater in June Solstice and September Equinox during high solar activity and greater at the equinoxes during low and moderate solar activities. This signifies a shift in nighttime MUF peak VR from the middle six months during low and moderate solar activities to the last half of the year during high solar activity. Daytime VR of both characteristics are not observed to show any seasonal variation. MUF VR and that of NmF2 are found to increase and decrease alternately with the Zurich sunspot number (Rz) for Ibadan and Singapore. For Slough, the VR of both characteristics increases with Rz during the first half of the day. It then increases and decreases alternately with Rz during the remaining hours of the day. While nighttime MUF VR decreases with latitude, just like nighttime NmF2 VR, no latitudinal effect is found for daytime VR of both characteristics.  相似文献   

20.
磁暴期间中纬度电离层剖面结构变化的数值模拟   总被引:4,自引:1,他引:4  
利用电离层理论模型模拟了磁暴期间热层大气温度、成分、中性风和电场扰动对电离层电子密度剖面结构,特别是峰值密度和峰值高度变化的影响,结果表明,热层大气温度变化所引起光化反应系数的改变对电离层剖面结构影响不大;热层大气成分特别是N2/O的变化能有效地引起密度剖面变化,N2增加足以使峰值密度产生所观测到的负相暴;由中性风和电场引起等离子体漂移是峰值高度hmF2变化的主要原因,但对电子密度的影响不足以抵消  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号