首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   496篇
  免费   103篇
  国内免费   75篇
航空   421篇
航天技术   59篇
综合类   103篇
航天   91篇
  2024年   4篇
  2023年   12篇
  2022年   15篇
  2021年   28篇
  2020年   25篇
  2019年   25篇
  2018年   24篇
  2017年   17篇
  2016年   25篇
  2015年   19篇
  2014年   25篇
  2013年   25篇
  2012年   25篇
  2011年   26篇
  2010年   28篇
  2009年   27篇
  2008年   31篇
  2007年   32篇
  2006年   25篇
  2005年   25篇
  2004年   26篇
  2003年   11篇
  2002年   13篇
  2001年   17篇
  2000年   14篇
  1999年   10篇
  1998年   21篇
  1997年   12篇
  1996年   10篇
  1995年   9篇
  1994年   10篇
  1993年   10篇
  1992年   15篇
  1991年   7篇
  1990年   9篇
  1989年   5篇
  1988年   8篇
  1987年   4篇
排序方式: 共有674条查询结果,搜索用时 15 毫秒
1.
航空适航法则及相关安全性标准中均对航空发动机叶片丢失后的安全性设计提出了要求,为此需要明确关键零件在叶片丢失后所承受的载荷环境。本文利用Newmark-β法求解载荷传递系统的瞬态运动微分方程,得到振动响应与力载荷的关系。设计了模拟转子不平衡响应试验,进行突加不平衡质量后的转子响应测试,进而通过试验件内外振动响应获得了冲击载荷的传递规律。同时为研究阻尼在叶片丢失外传载荷中的影响效果,通过控制对试验件阻尼器是否供油,进行了有支点阻尼及无支点阻尼的振动响应对比试验。研究结果表明,冲击载荷在通过静子件后会产生明显衰减,本文试验对象传递比最高仅为53%,远离转子支承处所承受的载荷远低于转子支承处的载荷。同时,阻尼会明显降低冲击瞬间的外传载荷,但对转子稳定后的稳态载荷影响较小。本文研究表明:进行航空发动机叶片丢失条件下安全性分析时,需考虑冲击载荷的衰减及阻尼影响。另外,合理的阻尼器布局将有效降低叶片丢失时产生的冲击载荷作用,有助于提升发动机的抗冲击能力。  相似文献   
2.
针对液压系统油源的安全性及可靠性问题,提出油源冗余设计方法,即多油源供给多负载,当某一油源发生故障时能源选择阀切断故障油源,由其他油源给负载提供基本液压能源,系统能完成必须的服役性能。针对液压系统能源选择阀存在的频繁换向与振动问题,提出一种插装式液控能源选择阀,其先导阀采用锥阀和可变阻尼形式,主阀采用三台肩且终端有缓冲功能的滑阀。建立了插装式液控能源选择阀的数学模型,分析了能源选择阀在两种模拟故障下的切换压力及切换时间、油源压力脉动等特性。理论分析结果表明,油源压力阶跃和线性变化时,某能源选择阀切换时间分别为5 ms和7 ms。当压力发生波动时,主阀不会发生振动,还可通过液控先导阀结构设计来控制切换压力和回复压力大小。  相似文献   
3.
用于叶片减振的压电材料分布拓扑优化   总被引:3,自引:2,他引:1  
提出一种可用于实际叶盘结构的压电分支阻尼器拓扑优化方法,可以给出总质量受约束的压电材料在叶片上的最佳分布,达到尽可能大的模态阻尼比。通过理论推导说明:压电阻尼器所产生的模态阻尼比仅取决于模态机电耦合系数,且该系数只与压电材料的几何形状以及模态应力场有关。进一步结合压电本构关系,基于应力分量的线性加权给出了有限的压电材料在叶片上铺设位置“优先级”的判断指标。给出了基于叶盘结构有限元模型的压电材料拓扑优化方法,通过替换单元类型和材料参数的方式对压电材料进行布置,并给出了多模态族优化、极化方向设置、电极铺设等问题的解决方案。在一个接近真实的叶盘模型上应用了此优化方法。结果表明,仅使用质量占叶片质量10%的压电材料,就可以为多个模态提供约12%的阻尼比。   相似文献   
4.
袁维东  高瞻  刘浩康  缪国峰 《航空学报》2020,41(1):223162-223162
针对复合壳阻尼结构的拓扑减振优化问题,以约束阻尼层的有限单元为设计变量,采用体积比、模态频率和振型为优化约束条件,构建以多模态权重系数的结构模态损耗因子数值关系为优化目标函数的拓扑减振优化模型。为了拓展优化目标灵敏度具有不局限于某一变密度法插值模型的形式,推导了数值表达式的一般函数式。动力学优化中优化目标灵敏度正、负数集共存,使得非凸性的目标函数设计变量出现负值或优化函数寻优于局部极值点。为此,推导出复合壳阻尼结构的全域灵敏度改进优化准则法迭代格,以确保每次迭代域均为全域设计变量集。结合有限单元法编程实现了复合壳阻尼结构改进准则法,并对复合壳结构进行拓扑减振优化分析。结果表明:在敷设体积减为全覆盖的50%时,复合壳结构的模态损耗因子增减偏差为10%,具有提升减振的轻量化设计目的;各阶目标函数和拓扑构型所需的迭代次数少,中间密度区域较小,多阶优于单阶模态优化函数,易于获得全域寻优的有效减振。  相似文献   
5.
针对柔性接头动态迟滞曲线受控制系统控制位置精度和动态响应速度影响较大的问题,基于电液伺服机构和柔性接头变刚度变阻尼模型,构建了柔性喷管的电液伺服机构-变刚度变阻尼模型,将其和电液伺服机构-定刚度定阻尼模型进行了对比。分析了电液伺服机构主要参数、柔性接头工作参数等对电液伺服机构-柔性接头系统动态特性的影响。分析结果表明:电液伺服机构-变刚度变阻尼模型所构造的迟滞曲线可更准确地与实验结果相吻合,并符合迟滞曲线随频率变化的规律,反馈系数、放大器静态放大系数、电液伺服机构增益、滑阀流量增益等参数对系统动态特性的影响更为明显。该模型为固体火箭发动机电液伺服机构-柔性接头系统动态特性的调整提供理论依据。  相似文献   
6.
中间柔性包带是环形可展开天线的重要组成部分。中间包带拔销器解锁后,复材包带与环形桁架同步展开。因复材包带柔性较强,它会绕根部固定端进行回弹,因此展开过程存在金属接头和桁架上复材薄壁管件碰撞风险。随着天线口径增大,该风险会持续增大。基于柔性多体动力学理论对超大型口径环形可展开天线包带展开过程进行动力学建模仿真,并在此基础上分析得出包带展开过程金属接头到环形桁架最小距离主要和复材包带阻尼率以及桁架预展速度相关。通过进一步研究发现:复材包带阻尼率越高,展开过程金属接头到环形桁架最小距离越大;桁架预展速度越快,展开过程金属接头到环形桁架最小距离越小。此外,对逆止回弹机构失效这一在轨极端条件下包带展开过程进行建模仿真,分析得出包带在该条件下展开过程金属接头到环形桁架最小距离变化规律。该研究可为超大口径环形天线结构优化设计及包带在轨展开预示提供依据。  相似文献   
7.
频率失谐对跨声速压气机气弹稳定性的影响   总被引:3,自引:3,他引:0       下载免费PDF全文
为了深入理解频率失谐对跨声速压气机气弹稳定性的影响,基于能量法建立了跨声速颤振实验转子的全周气动阻尼计算模型,数值分析了转子叶片频率交替失谐、随机失谐以及线性失谐对其气弹稳定性的影响。数值计算了该转子的气动性能,颤振边界和叶片模态,其结果和实验数据吻合较好;研究不同模态、不同叶片间相位角条件下谐调转子的气动阻尼,结果表明叶片间相位角对叶片气动阻尼均有较大的影响,尤其在一弯模态下,叶片气动阻尼对叶片间相位角最敏感;对该转子所有叶片的平均气动阻尼而言,失谐的存在弱化了叶片间相角对叶片气动阻尼的影响,显著提高了该转子最不稳定状态的平均阻尼达到7~11倍,反之使其最稳定状态的平均阻尼降低约50%;失谐转子中不同叶片的气动阻尼表现出显著差异,其受叶片局部失谐模式及失谐量的影响较大。  相似文献   
8.
阻尼硅橡胶为研究对象,依据Miner破坏积累准则得出的5次幂橡胶疲劳定律,研究阻尼硅橡胶加速疲劳特性.试验结果表明:具有一定阻尼性能的硅橡胶材料不符合5次幂橡胶疲劳定律,并建议在工程上不采用加速试验方法评价阻尼硅橡胶制品的疲劳寿命.  相似文献   
9.
针对内嵌自主移动钢球欧拉梁碰撞系统,研究了在一复杂工况下内嵌自主移动钢球碰撞阻尼机制对梁残余衰减振动的抑制效果.采用线性弹簧-阻尼模型模拟钢球与梁之间的碰撞机制,通过分析建立了整个碰撞系统的分段线性动力学方程,并运用无量纲化、假设模态法、高阶模态截断等方法导出了系统的状态空间方程.数值计算结果充分表明在此工况下内嵌自主...  相似文献   
10.
针对应用于风洞试验模型支撑的绳系并联机器人的设计需求,采用实验和理论建模相结合的方法,研究绳阻尼对绳系并联机器人动力学特性的影响。首先,为了准确地定量描述绳阻尼,设计了一套测量绳阻尼的实验装置,通过实验得到了不同参数下的绳阻尼比;其次,考虑了绳阻尼,对绳张力进行建模,并提出了考虑绳阻尼的绳系并联机器人的动力学建模方法;最后,分析了绳阻尼对绳系并联机器人动力学特性的影响。结果表明:绳阻尼对绳系并联机器人动力学响应的影响主要体现在响应幅值上,绳直径越大,绳阻尼对绳系并联机器人动力学响应的减振作用越明显。当绳阻尼系数大于0.6 N·s/m时,不论绳直径粗细如何,绳阻尼对绳系并联机器人动力学特性的影响不能忽略。研究结果可为绳系并联机器人的设计提供理论指导。   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号