首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
航天技术   2篇
航天   1篇
  2009年   1篇
  2008年   2篇
排序方式: 共有3条查询结果,搜索用时 438 毫秒
1
1.
Solar energetic protons degrade performance and reliability of spacecraft systems due to single-event effects, total dose effects and displacement damage in electronics components including solar cells. On designing a solar cell panel, a total fluence of solar energetic protons (SEPs) which cause solar cell damage is needed to estimate power loss of the solar cells over mission life. Nowadays a solar panel area of spacecraft is increasing as spacecraft mission life becomes longer (15–18 years). Thus an accurate SEP model is strongly required for the cost-minimum design from the aerospace industry. The SEP model, JPL-91 proposed by Feynman et al., is currently used widely for solar cell designing. However, it is known that the JPL-91 model predicts higher fluences of protons than values actually experienced in space, especially after 7 years on orbit. In addition, the model is based on several assumptions, and also needs Monte-Carlo simulations for calculating fluences. In this study, we propose a new method for modeling SEPs especially focused on solar cell degradation. The newly-proposed method is empirical, which constructs a model based directly upon proton flux measurement data taken by instruments onboard spacecraft. This method has neither assumptions nor dependence on SEP event selection, both of which are needed in JPL-91. The model fluences derived from this method show lower fluences in longer missions compared to JPL-91. This method has been proposed to ISO (International Organization for Standardization) and has been discussed for a new standard SEP model.  相似文献   
2.
This paper reports single-event upset (SEU) occurrence related to the space radiation environment in geostationary transfer orbit during solar-activity maximum period measured by the Tsubasa satellite. Most SEUs are measured in the inner radiation belt, indicating that they are mainly caused by trapped protons. Thus, the spatial distribution and the temporal variation of the SEU count correlate well with those of trapped protons. The peak SEU rate appears around L = 1.4. The transition point from SEUs caused by trapped protons to those caused by galactic cosmic rays is around L = 2.6. During the experiment period, increased SEU count was sometimes detected due to solar and geomagnetic events outside the inner radiation belt.  相似文献   
3.
(MUSCAT) is a high value computation tool for analyzing spacecraft–plasma interaction, whose typical example is charging–arcing issue, corresponding to spacecrafts in LEO, GEO and PEO. JAXA and Kyushu Institute of Technology (KIT) started the development as a joint project in November 2004 and the final version of MUSCAT was released in March 2007. The final version includes many important features to simulate spacecraft–plasma interaction and the features can be separated into four parts. The first part is its GUI named “Vineyard”. By using Vineyard, MUSCAT users can build a satellite model including not only its geometry but also material properties of the surface. As for the second part, MUSCAT includes many kinds of effects derived from space plasma environment as well as electrical functions of spacecraft. For the third part, MUSCAT can work on parallel workstation with multi-CPU. The last feature is that the computation result by MUSCAT was thoroughly validated by experiments in plasma chamber. The numerical result shows very good agreement with the code validation experiment. We also conducted trial computation of charging analysis on Greenhouse gases Observing Satellite (GOSAT) with MUSCAT. One purpose of the computation was prediction of charging status of GOSAT for the real satellite design in combination with the ground test. The other is performance assessment of MUSCAT. After the joint project, expansion and maintenance of MUSCAT will be carried out by “MUSCAT Space Engineering Ltd” which is a new enterprise made of the development team. In future we will try to conduct MUSCAT computation for various spacecrafts and also try to add useful function such as 3D CAD compatibility.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号