首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Accomplishment of multi-utility spacecraft charging analysis tool (MUSCAT) and its future evolution
Authors:Shinji Hatta  Takanobu Muranaka  Jeongho Kim  Satoshi Hosoda  Kouichirou Ikeda  Naomi Kurahara  Mengu Cho  Hiroko O Ueda  Kiyokazu Koga  Tateo Goka
Institution:1. Southwest Research Institute, Space Science and Engineering Division, 1050 Walnut Street, Suite 300, Boulder, CO, USA;2. Southwest Research Institute, Earth, Oceans, & Space Department, Durham, NH, USA;3. Christian-Albrechts-Universität zu Kiel, Kiel, Germany;4. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA;5. Deutsches Zentrum für Luft- und Raumfahrt, Cologne, Germany
Abstract:(MUSCAT) is a high value computation tool for analyzing spacecraft–plasma interaction, whose typical example is charging–arcing issue, corresponding to spacecrafts in LEO, GEO and PEO. JAXA and Kyushu Institute of Technology (KIT) started the development as a joint project in November 2004 and the final version of MUSCAT was released in March 2007. The final version includes many important features to simulate spacecraft–plasma interaction and the features can be separated into four parts. The first part is its GUI named “Vineyard”. By using Vineyard, MUSCAT users can build a satellite model including not only its geometry but also material properties of the surface. As for the second part, MUSCAT includes many kinds of effects derived from space plasma environment as well as electrical functions of spacecraft. For the third part, MUSCAT can work on parallel workstation with multi-CPU. The last feature is that the computation result by MUSCAT was thoroughly validated by experiments in plasma chamber. The numerical result shows very good agreement with the code validation experiment. We also conducted trial computation of charging analysis on Greenhouse gases Observing Satellite (GOSAT) with MUSCAT. One purpose of the computation was prediction of charging status of GOSAT for the real satellite design in combination with the ground test. The other is performance assessment of MUSCAT. After the joint project, expansion and maintenance of MUSCAT will be carried out by “MUSCAT Space Engineering Ltd” which is a new enterprise made of the development team. In future we will try to conduct MUSCAT computation for various spacecrafts and also try to add useful function such as 3D CAD compatibility.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号