首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
航空   1篇
航天技术   9篇
航天   3篇
  2014年   2篇
  2013年   4篇
  2011年   2篇
  2009年   1篇
  2008年   1篇
  2006年   1篇
  2004年   1篇
  1996年   1篇
排序方式: 共有13条查询结果,搜索用时 82 毫秒
1.
Today’s space debris environment shows major concentrations of objects within distinct orbital regions for nearly all size regimes. The most critical region is found at orbital altitudes near 800 km with high declinations. Within this region many satellites are operated in so called sun-synchronous orbits (SSO). Among those, there are Earth observation, communication and weather satellites. Due to the orbital geometry in SSO, head-on encounters with relative velocities of about 15 km/s are most probable and would thus result in highly energetic collisions, which are often referred to as catastrophic collisions, leading to the complete fragmentation of the participating objects. So called feedback collisions can then be triggered by the newly generated fragments, thus leading to a further population increase in the affected orbital region. This effect is known as the Kessler syndrome.  相似文献   
2.
The Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) measures scattered sun light also in limb viewing mode (i.e. tangential to Earth’s surface and its atmosphere), which allows determining vertical profiles of atmospheric trace gases. First results on the retrieval of NO2, BrO and OClO profiles from the SCIAMACHY Limb measurements are presented and compared to independent satellite and balloon borne observations.  相似文献   
3.
In recent years Micro Systems Technology (MST) was introduced to manufacture miniaturized components for satellite subsystems, like small sensors, valves, micromotors, antennas and many more. These components can be used to build a new class of satellites weighing considerably less than 10 kg, with the capabilities comparable to present microsatellites. With the possibility of cheap mass production of such nanosatellites new applications become possible. However, the construction of very small satellites is connected with problems concerning launch, orbit control and, deorbiting. Furthermore the reduction of size creates certain limits for power consumption, data rates and optical resolutions which have to be carefully considered.  相似文献   
4.
A numerical study on two challenging mixed-integer non-linear programming (MINLP) space applications and their optimization with MIDACO, a recently developed general purpose optimization software, is presented. These applications are the optimal control of the ascent of a multiple-stage space launch vehicle and the space mission trajectory design from Earth to Jupiter using multiple gravity assists. Additionally, an NLP aerospace application, the optimal control of an F8 aircraft manoeuvre, is discussed and solved. In order to enhance the optimization performance of MIDACO a hybridization technique, coupling MIDACO with an SQP algorithm, is presented for two of these three applications. The numerical results show, that the applications can be solved to their best known solution (or even new best solution) in a reasonable time by the considered approach. Since using the concept of MINLP is still a novelty in the field of (aero)space engineering, the demonstrated capabilities are seen as very promising.  相似文献   
5.
We study extreme-ultraviolet emission line spectra derived from three-dimensional magnetohydrodynamic models of structures in the corona. In order to investigate the effects of increased magnetic activity at photospheric levels in a numerical experiment, a much higher magnetic flux density is applied at the photosphere as compared to the Sun. Thus, we can expect our results to highlight the differences between the Sun and more active, but still solar-like stars. We discuss signatures seen in extreme-ultraviolet emission lines synthesized from these models and compare them to observed signatures in the spatial distribution and temporal evolution of Doppler shifts in lines formed in the transition region and corona. This is of major interest to test the quality of the underlying magnetohydrodynamic model to heat the corona, i.e. currents in the corona driven by photospheric motions (flux braiding).  相似文献   
6.
In a large majority of lunar and planetary surface images, impact craters are the most abundant geological features. Therefore, it is not surprising that crater detection algorithms (CDAs) are one of the most studied subjects of image processing and analysis in lunar and planetary science. In this work we are proposing an Integrated CDA, consisting of: (1) utilization of DEM (digital elevation map)-based CDA; (2) utilization of an optical-based CDA; (3) re-projection of used datasets and crater coordinates from normal to rotated view and back; (4) correction of the brightness and contrast of a used optical image; and (5) tile generation for the optical-based CDA and an assembling of results with an elimination of multiple detections, in combination with a pyramid approach down to the resolution of the available DEM image; and (6) a final integration of the results of DEM-based and optical-based CDAs, including a removal of duplicates. The proposed CDA is applied to one specific asteroid-like body, the small Martian moon Phobos. The experimental evaluation of the proposed CDA is done by a manual verification of crater-candidates and a search for uncatalogued craters. The evaluation has shown that the proposed CDA was used successfully for cataloging Phobos craters. The major result of this paper is the PH9224GT – currently the most complete global catalogue of the 9224 Phobos craters. The possible applications of the new catalogue are: (1) age estimations for any selected location; and (2) comparison/evaluation of the different chronology and production functions for Phobos. This confirms the practical applicability of the new Integrated CDA – an additional result of this paper, which can be used in order to considerably extend the current crater catalogues.  相似文献   
7.
Sodium–potassium droplets from the primary coolant loop of Russian orbital reactors have been released into space. These droplets are called NaK droplets. Sixteen nuclear powered satellites of the type RORSAT launched between 1980 and 1988 activated a reactor core ejection system, mostly between 900 and 950 km altitude. The core ejection causes an opening of the primary coolant loop. The liquid coolant consists of eutectic sodium–potassium alloy and has been released into space during these core ejections. The NaK coolant has been forming droplets up to a diameter of 5.5 cm. NaK droplets have been modeled before in ESA's MASTER Debris and Meteoroid Environment Model. The approach is currently revised for the MASTER-2009 upgrade. A mathematical improvement is introduced by substituting the current size distribution function by the modified Rosin–Rammler equation. A bimodal size distribution is derived which is based on the modified mass based Rosin–Rammler equation. The equation is modified by truncating the size range and normalizing over the finite range between the size limits of the smallest and the biggest droplet. The parameters of the model are introduced and discussed. For the validation of the NaK release model, sixteen release events are simulated. The resulting size distribution is compared with radar measurement data. The size distribution model fits well with revised published measurement data of radar observations. Results of orbit propagation simulation runs are presented in terms of spatial density.  相似文献   
8.
The scanning imaging absorption spectrometer for atmospheric chartography was launched successfully onboard ENVISAT on March 1, 2002. It observes the solar radiation transmitted and backscattered from the atmosphere and reflected from the ground in nadir, limb and occultation viewing modes. Chlorine dioxide (OClO), an important indicator for stratospheric chlorine activation, can be measured in the UV spectral range by differential optical absorption spectroscopy (DOAS).

First results of the DOAS retrieval of OClO slant column densities from the SCIAMACHY nadir measurements are presented and compared to measurements of the global ozone monitoring experiment (GOME), which has successfully measured OClO since 1995. While SCIAMACHY operates in the same orbit, it measures ≈30 min earlier than GOME and has an increased spatial resolution (30 × 60 km2 compared to 40 × 320 km2 for GOME).  相似文献   

9.
Within the last year three major re-entries occurred. The satellites UARS, ROSAT and Phobos-Grunt entered Earth’s atmosphere with fragments reaching the surface. Due to a number of uncertainties in propagating an object’s trajectory the exact place and time of a satellite’s re-entry is hard to determine. Major influences when predicting the re-entry time are the changing precision of the available orbital data, the satellite’s ballistic coefficient, the activity of the sun which influences the Earth’s atmosphere and the underlying quality of the atmospheric model. In this paper a method is presented which can reduce the variability in short-term orbital lifetime prediction induced by fluctuating orbital data accuracies. A re-entry campaign is used as a reference for this purpose. For a window of a few weeks before the re-entry the position data of a synthetic object is disturbed considering different degrees of orbital data errors. As a result different predictions will exist for the generated position data of a given day. Using a regression algorithm on the available data an average position is obtained, which is then used for the orbital lifetime prediction. The effect of this measure is a more consistent prediction of the orbital lifetime. The paper concludes with the comparison of the generated re-entry windows in various test cases for the original and the averaged data.  相似文献   
10.
Abstract

An experiment was conducted to examine the impact of communication methods (text-only, audio-only, and audio-plus-video) on communication patterns and effectiveness in a 2-person remote spatial orientation task. The task required a pair of participants to figure out the cardinal direction of a target object by communicating spatial information and perspectives. Results showed that overall effectiveness in the audio-only condition was better than the text-only and audio-plus-video conditions, and communication patterns were more predictive of errors than individual differences in spatial abilities. Discourse analysis showed that participants in the audio-plus-video condition performed less mental transformation of spatial information when communicating, which led to more interpretation errors by the listener. Participants in the text-only conditions performed less confirmation and made more errors by misreading their own display. Results suggested that speakers in the audio-plus-video condition minimized effort by communicating spatial information based on their own perspective but speakers in the audio-only and text-only conditions would more likely communicate transformed spatial information. Analysis of gestures in the audio-plus-video condition confirmed that iconic gestures tended to co-occur with spatial transformation. Iconic gesture rates were negatively correlated with transformation errors, indicating that iconic gestures more likely co-occurred with successful communication of spatial transformation. Results show that when visual interactive feedback is available, speakers tend to adopt egocentric spatial perspectives to minimize effort in mental transformation and rely on the feedback to ensure that the hearer correctly interprets the information. When visual interactive feedback is not available, speakers will put more effort in transforming spatial information to help the hearer to understand the information. The current result demonstrated that allowing two persons to see and communicate with each other during a remote spatial reasoning task can lead to more errors because of the use of a suboptimal communication strategy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号