首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   2篇
航空   3篇
航天   3篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  2007年   1篇
  2001年   2篇
排序方式: 共有6条查询结果,搜索用时 167 毫秒
1
1.
LDA测量方截面U型旋转通道速度分布   总被引:3,自引:2,他引:3       下载免费PDF全文
为了深入了解旋转涡轮叶片内冷通道中的流动特性,用激光多谱勒测速仪(LDA)测量了旋转U型通道中的平均速度分布。通道的横截面积为50mm×50mm,弯管的平均半径与水利直径的比值为0.65,旋转轴与弯管的曲率轴平行。在Re=105时分别测量了转动数Ro=0,0.2和-0.2三种旋转状态下的速度分布。在这三种情况下弯管内侧θ=90°至下游一定范围内都有流动的分离出现。由于不同的旋转状态二次流的方向和强弱不同,导致了分离区大小和通道中速度分布的不同。  相似文献   
2.
闻名全球的圣安妮大教堂被誉为"爱尔兰的教堂",源于《山顿的钟声》和8座大钟的故事已经在世间流传了800多年。座落于爱尔兰科克市山顿地区山顶上的圣安妮大教堂和钟楼,静静地俯瞰着利菲河,顶端硕大的三文鱼形状的风向标,则寓意利菲河丰饶的渔业。设在教堂顶端如此恰当的风向标,是鉴于基督教一直将鱼公认为王者的象征。  相似文献   
3.
The European Space Agency's ExoMars mission will seek evidence of organic compounds of biological and non-biological origin at the martian surface. One of the instruments in the Pasteur payload may be a Life Marker Chip that utilizes an immunoassay approach to detect specific organic molecules or classes of molecules. Therefore, it is necessary to define and prioritize specific molecular targets for antibody development. Target compounds have been selected to represent meteoritic input, fossil organic matter, extant (living, recently dead) organic matter, and contamination. Once organic molecules are detected on Mars, further information is likely to derive from the detailed distribution of compounds rather than from single molecular identification. This will include concentration gradients beneath the surface and gradients from generic to specific compounds. The choice of biomarkers is informed by terrestrial biology but is wide ranging, and nonterrestrial biology may be evident from unexpected molecular distributions. One of the most important requirements is to sample where irradiation and oxidation are minimized, either by drilling or by using naturally excavated exposures. Analyzing regolith samples will allow for the search of both extant and fossil biomarkers, but sequential extraction would be required to optimize the analysis of each of these in turn.  相似文献   
4.
Rix CS  Sims MR  Cullen DC 《Astrobiology》2011,11(9):839-846
The proposed ExoMars mission, due to launch in 2018, aims to look for evidence of extant and extinct life in martian rocks and regolith. Previous attempts to detect organic molecules of biological or abiotic origin on Mars have been unsuccessful, which may be attributable to destruction of these molecules by perchlorate salts during pyrolysis sample extraction techniques. Organic molecules can also be extracted and measured with solvent-based systems. The ExoMars payload includes the Life Marker Chip (LMC) instrument, capable of detecting biomarker molecules of extant and extinct Earth-like life in liquid extracts of martian samples with an antibody microarray assay. The aim of the work reported here was to investigate whether the presence of perchlorate salts, at levels similar to those at the NASA Phoenix landing site, would compromise the LMC extraction and detection method. To test this, we implemented an LMC-representative sample extraction process with an LMC-representative antibody assay and used these to extract and analyze a model sample that consisted of a Mars analog sample matrix (JSC Mars-1) spiked with a representative organic molecular target (pyrene, an example of abiotic meteoritic infall targets) in the presence of perchlorate salts. We found no significant change in immunoassay function when using pyrene standards with added perchlorate salts. When model samples spiked with perchlorate salts were subjected to an LMC-representative liquid extraction, immunoassays functioned in a liquid extract and detected extracted pyrene. For the same model sample matrix without perchlorate salts, we observed anomalous assay signals that coincided with yellow coloration of the extracts. This unexpected observation is being studied further. This initial study indicates that the presence of perchlorate salts, at levels similar to those detected at the NASA Phoenix landing site, is unlikely to prevent the LMC from extracting and detecting organic molecules from martian samples.  相似文献   
5.
Abstract The Life Marker Chip (LMC) instrument is part of the proposed payload on the ESA ExoMars rover that is scheduled for launch in 2018. The LMC will use antibody-based assays to detect molecular signatures of life in samples obtained from the shallow subsurface of Mars. For the LMC antibodies, the ability to resist inactivation due to space particle radiation (both in transit and on the surface of Mars) will therefore be a prerequisite. The proton and neutron components of the mission radiation environment are those that are expected to have the dominant effect on the operation of the LMC. Modeling of the radiation environment for a mission to Mars led to the calculation of nominal mission fluences for proton and neutron radiation. Various combinations and multiples of these values were used to demonstrate the effects of radiation on antibody activity, primarily at the radiation levels envisaged for the ExoMars mission as well as at much higher levels. Five antibodies were freeze-dried in a variety of protective molecular matrices and were exposed to various radiation conditions generated at a cyclotron facility. After exposure, the antibodies' ability to bind to their respective antigens was assessed and found to be unaffected by ExoMars mission level radiation doses. These experiments indicated that the expected radiation environment of a Mars mission does not pose a significant risk to antibodies packaged in the form anticipated for the LMC instrument. Key Words: Life-detection instruments-Planetary habitability and biosignatures-Radiation-Mars-Life in extreme environments. Astrobiology 12, 718-729.  相似文献   
6.
旋转方截面U型通道分离流二阶相关分量测量   总被引:2,自引:1,他引:2       下载免费PDF全文
为了深入了解旋转涡轮叶片内冷通道中的紊流特性,并为CFD研究提供实验数据,用激光多普勒测速仪(LDA)测量了旋转U型通道中分离流的雷诺应力分量。通道的转轴与弯道的曲率轴平行,测量是在与转轴垂直的对称平面中进行的,流动状态为Re=100,000,Ro=0,0.2和-0.2。直接测量的分量为ux^2^-,Ux^2^-和uxux^-,结果表明旋转对紊流分布的形式有很强的影响。在测量的三种旋转状态中Ro=0.2的正转和Ro=0.2的负转分别具有最低和最高的紊流强度。根据测量到的信息估算了雷诺应力uiuj^-的产生率,结果显示负转的产生率比正转时高。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号