首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   3篇
航空   8篇
航天   2篇
  2002年   1篇
  2001年   4篇
  2000年   2篇
  1997年   2篇
  1996年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
航天飞行器防热部件烧蚀行为的数值模拟   总被引:2,自引:0,他引:2  
对航天飞行器防热部件在氧-煤油发动机火焰喷吹下的烧蚀行为进行了有限元数值模拟。利用“杀死”单元的方法建立防热部件瞬态温度场的有限元模型,实现了烧蚀边界的退缩,从而完成了对烧蚀尺寸变化的定量描述。烧蚀开始于4.59s,到12s时线烧蚀量为1.47mm。计算结果与试验的实测结果一致。  相似文献   
2.
采用真空热压烧结工艺制备了SiO2短纤维补强增韧的SiO2玻璃陶瓷基复合材料,研究了烧结温度和保温时间对其显微结构和力学性能的影响规律,结果表明,SiO2f/SiO2复合材料的强度和韧性较石英玻璃有明显改善;延长热压保温时间、提高烧结温度、虽有利于材料致密化,但析晶量增加和纤维退化更严重,复合材料的强度和断裂韧性随之下降。  相似文献   
3.
采用真空热压烧结工艺制备了碳纤维体积分数分别为20%、40%和60%的高致密Cf/SiO2复合材料,研究了碳纤维含量对其组织结构,力学性能、热膨胀特性和抗氧化性能的影响规律。结果表明:SiO2基体及20%Cf/SiO2复合材料中,SiO2仍保持非晶态,碳纤维含量为40%和60%时,SiO2发生部分析晶;Cf/SiO2复合材料的抗弯强度、断裂韧性和断裂应变,随碳纤维含量增加均呈现先降低后又增加的趋势,而弹性模量则先增后降;60%Cf/SiO2表现出明显伪塑性;碳纤维含量增大,使复合材料的热膨胀系数成倍增加,抗氧化性变差。  相似文献   
4.
研究了三种助烧剂MgO、Al2O3+AlN和Y2O3+AlN对1800℃×3h工艺下无压烧结Si3N4力学性能的影响情况。发现材料力学性能主要决定于助烧剂的种类,其次取决于含量。其Y2O3+AlN虽使最终生成的β-Si3N4长径比较小,线度尺寸最短,但最利于致密化,因而使材料力学性能最佳,添加量(质量分数)为12%Y2O3+6%AlN时,陶瓷的抗弯强度、断裂韧性和维氏硬度分别达到431.6MPa、5.10MPa*m1/2和14.52GPa。  相似文献   
5.
SiC晶须增强机械合金化Al—12Ti复合材料的力学性能   总被引:1,自引:0,他引:1  
研究了SiC晶须对机械合金化Al-12Ti基复合材料的这曙力学性能和550℃空气气氛下暴露后力学性能的变化规律。  相似文献   
6.
石墨颗粒增韧SiO2基复合材料韧化机理   总被引:2,自引:0,他引:2  
真空热压烧结制成了石墨颗粒(Cp)增韧SiO2陶瓷基复合材料,对其组织结构、力学行为和增韧机制进行了研究。由于石墨粒子具有明显诱导SiO2玻璃基体晶化的作用,SiO2引入体积含量10%和Cp后,在基体强度水平仅轻微下降的同时,复合材料弹性模量明显降低,断裂韧和断裂应变显著提高,且宏观上表现出明显的伪塑性。片状石墨粒子的桥接、拔出、尤其是诱导裂纹偏转和诱发微裂纹,是材料及韧化显现伪塑性的主要原因。  相似文献   
7.
采用真空热压烧结工艺制备了SiO  相似文献   
8.
机械合金化及其在Al合金和Al基复合材料中的应用进展   总被引:4,自引:0,他引:4  
介绍了机械合金化材料的制备工艺过程及特点,重点评述了MAAl合金及Al基复合材料的研究现状,并指出了有待深入研究的问题。  相似文献   
9.
研究了SiC晶须对机械合金化(MA)A1-12Ti基复合材料的室温力学性能和55℃空气气氛下暴露后力学性能的变化规律。结果表明:SiCw起到了较好的增强作用,复合材料的强度、弹性模量、比强度、比刚度和弯曲断裂应变等各项力学性能比基体合金MAA1-12Ti均明显提高,但热稳定性变差,长时间高温暴露导致SiCw/基体之间界面压应力松驰,界面结合强度下降,是复合材料力学性能恶化的主要原因。  相似文献   
10.
硅氧氮陶瓷的先驱体法合成及性能的研究   总被引:3,自引:2,他引:3  
用 Si Cl4为原料 ,通过水解和氨解的方法 ,制备了不同含氮量的硅氧氮先驱体。先驱体通过脱氨基原位聚合 ,再经过无机化转变成为成分均匀的硅氧氮粉体 ,用所得粉体热压烧结制备了硅氧氮材料。测试分析结果表明 ,氮的引入使氧化硅的析晶温度提高了 1 5 0℃ ;适量析晶显著提高材料的力学性能 ;烧结温度为 1 4 0 0℃时 ,氮的质量分数为 2 4 .3%材料的强度和韧性最大 ,分别达到 1 5 6 MPa和 1 .8MPa· m1 / 2 ,比 Si O2 基体的强度和韧性提高了 4 .5 8倍和 2 .2 5倍。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号